The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,h...The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,hardness test,electrochemical test and DSC techniques.It was found that deposition layers were formed on the surfaces of the simulated launch samples.The thickness and surface roughness of these deposition layers increased with increasing the heat effect,suggesting a launch speed dependent damage degree of the arc ablation.The hardness variation of samples is attributed to the effects of the deposition layer and deformation hardening.The surface deposition layer affects corrosion resistance and crystalline characteristics,leading to changes in subsequent service performances.Additionally,the surface texture and plastic deformation ability of the samples are related to the recrystallization degree and deformation grain amount.展开更多
纳米材料因其自身独特性能而备受关注,从而引发了人们对其进行一系列的研究。采用机械合金化法(MA)和粉末冶金法(PM)制备了纳米尺寸和常规尺寸粉末,通过控制温度和压力等因素,利用真空热压烧结炉将两种不同尺寸的Cu-20Co-20Cr-20Ni粉末...纳米材料因其自身独特性能而备受关注,从而引发了人们对其进行一系列的研究。采用机械合金化法(MA)和粉末冶金法(PM)制备了纳米尺寸和常规尺寸粉末,通过控制温度和压力等因素,利用真空热压烧结炉将两种不同尺寸的Cu-20Co-20Cr-20Ni粉末热压成块体合金,并利用电化学测试技术研究了它们在0.5mol·L^(-1)中性Na Cl溶液中的腐蚀行为以及纳米化对其腐蚀行为的影响。结果表明:当Cu-20Co-20Cr-20Ni合金处于0.5mol·L^(-1) Na Cl腐蚀溶液中时,纳米尺寸Cu-20Co-20Cr-20Ni合金较相应的常规尺寸合金自腐蚀电位发生正移,电荷传递电阻变大,腐蚀电流密度减小。可见,晶粒细化导致Cu-20Co-20Cr-20Ni合金的耐腐蚀性能增强。展开更多
基金the Key Research and Development Program of China(No.2022YFB2404102)the National Natural Science Foundation of China(Nos.51971093,52171158,52101196)+5 种基金the Key Research and Development Program of Shandong Province,China(Nos.2020ZLYS11,2021ZLGX01,2022CXGC020308,2023CXGC010308)the Major Innovation Projects of Shandong Province,China(Nos.2020CXGC010701,2020CXGC010702)the Young Taishan Scholars,China(No.tsqn202211184)the Shandong Provincial Natural Science Foundation,China(No.ZR2022ME137)the Yantai Science and Technology Planning Project,China(No.2021ZDCX001)the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center(Ludong University),China(No.MAETIC2021-11).
文摘The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,hardness test,electrochemical test and DSC techniques.It was found that deposition layers were formed on the surfaces of the simulated launch samples.The thickness and surface roughness of these deposition layers increased with increasing the heat effect,suggesting a launch speed dependent damage degree of the arc ablation.The hardness variation of samples is attributed to the effects of the deposition layer and deformation hardening.The surface deposition layer affects corrosion resistance and crystalline characteristics,leading to changes in subsequent service performances.Additionally,the surface texture and plastic deformation ability of the samples are related to the recrystallization degree and deformation grain amount.
文摘纳米材料因其自身独特性能而备受关注,从而引发了人们对其进行一系列的研究。采用机械合金化法(MA)和粉末冶金法(PM)制备了纳米尺寸和常规尺寸粉末,通过控制温度和压力等因素,利用真空热压烧结炉将两种不同尺寸的Cu-20Co-20Cr-20Ni粉末热压成块体合金,并利用电化学测试技术研究了它们在0.5mol·L^(-1)中性Na Cl溶液中的腐蚀行为以及纳米化对其腐蚀行为的影响。结果表明:当Cu-20Co-20Cr-20Ni合金处于0.5mol·L^(-1) Na Cl腐蚀溶液中时,纳米尺寸Cu-20Co-20Cr-20Ni合金较相应的常规尺寸合金自腐蚀电位发生正移,电荷传递电阻变大,腐蚀电流密度减小。可见,晶粒细化导致Cu-20Co-20Cr-20Ni合金的耐腐蚀性能增强。