The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-in...The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self- standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE-Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE-Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.展开更多
Gel polymer electrolytes(GPEs) are promising alternatives to liquid electrolytes applied in high-energydensity batteries.Here superior SiO_(2) nanofiber composite gel polymer electrolytes(SNCGPEs) are developed via in...Gel polymer electrolytes(GPEs) are promising alternatives to liquid electrolytes applied in high-energydensity batteries.Here superior SiO_(2) nanofiber composite gel polymer electrolytes(SNCGPEs) are developed via in-situ ionic ring-opening polymerization of 1,3-dioxolane(DOL) monomers in SiO_(2) nanofiber membrane(PDOL-SiO_(2)) for lithium metal batteries.The oxygen atoms of PDOL together with Si-O of SiO_(2) construct a more efficient channel for Li^(+) migration.Consequently,the lithium ion transference number(t_(Li^(+)) and ionic conductivity(σ) at 30℃ of PDOL-SiO_(2) are 0.80 and 1.68×10^(-4)S/cm separately.PDOL-SiO_(2) manifests the electrochemical decomposition potentials of 4.90 V.At 0.5 mA/cm^(2),Li|PDOL-SiO_(2) |Li cell shows a steady cycling performance for nearly 1400 h.LFP|PDOL-SiO_(2) |Li battery can steadily cycle at 0.5 C with a capacity retention rate of 89% after 200 cycles.While cycling at 2 C,the capacity retention rate can maintain at 78% after 300 cycles.This contribution provides a innovative strategy for accelerating Li^(+)transportation via designing PDOL molecular chains throughout the SiO_(2) nanofiber framework,which is crucial for high-energy-density LMBs.展开更多
The development of low-cost and eco-friendly gel polymer electrolytes (GPEs) with a wide window, ideal compatibility, and structural stability is an effective measure to achieve safe high-energy-density lithium-metal ...The development of low-cost and eco-friendly gel polymer electrolytes (GPEs) with a wide window, ideal compatibility, and structural stability is an effective measure to achieve safe high-energy-density lithium-metal batteries. Herein, a biodegradable composite polyacrylonitrile/poly-L-lactic acid nanofiber membrane (PAL) is synthesized and used as a robust skeleton for GPEs. The 3D nanofiber membrane (PAL-3-C12) prepared with an adjusted weight ratio of polyacrylonitrile (PAN)/poly-L-lactic acid (PLLA) and spinning solution concentration delivers decent thermal stability, biodegradability, and liquid electrolyte absorbability. The “passivation effect” of PAN upon lithium metal is effectively alleviated by hydrogen bonds formed in the PAL chains. These advantages enable PAL GPEs to work stably to 5.17 V while maintaining high ionic conductivity as well as excellent corrosion resistance and dielectric properties. The interfacial compatibility of optimized GPEs promotes the stable operation of a Li||PAL-3-C12 GPEs||Li symmetric battery for 1000 h at 0.15 mA cm^(−2)/0.15 mA h cm^(−2), and the LiFePO4 full cell retains capacity retention of 97.63% after 140 cycles at 1C.展开更多
基金Key Program of Natural Science Foundation of Shenzhen(JCYJ20220818102218039)Shenzhen Science and Technology Program(KCXFZ20230731093559005)+2 种基金Natural Science Foundation of Shenzhen(JCYJ20210324133412033)Guangdong Province Innovation Team Project for Universities(2023KCXTD049)Shenzhen Key Medical Discipline Construction Fund(SZXK045)。
基金financially supported by the National Natural Science Foundation of China(Nos.21673169 and 51672205)the National Key Research and Development Program of China(No.2016YFA0202602)+1 种基金the Research Start-Up Fund from Wuhan University of Technologythe Fundamental Research Funds for the Central Universities(Nos.2016IVA083 and 2017IB005)
文摘The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self- standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE-Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE-Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.
基金supported by the Department of Science and Technology of Zhuhai City(No.ZH22017001200059PWC)the Department of Science and Technology of Guangdong Province,China(No.2019A050510043)。
文摘Gel polymer electrolytes(GPEs) are promising alternatives to liquid electrolytes applied in high-energydensity batteries.Here superior SiO_(2) nanofiber composite gel polymer electrolytes(SNCGPEs) are developed via in-situ ionic ring-opening polymerization of 1,3-dioxolane(DOL) monomers in SiO_(2) nanofiber membrane(PDOL-SiO_(2)) for lithium metal batteries.The oxygen atoms of PDOL together with Si-O of SiO_(2) construct a more efficient channel for Li^(+) migration.Consequently,the lithium ion transference number(t_(Li^(+)) and ionic conductivity(σ) at 30℃ of PDOL-SiO_(2) are 0.80 and 1.68×10^(-4)S/cm separately.PDOL-SiO_(2) manifests the electrochemical decomposition potentials of 4.90 V.At 0.5 mA/cm^(2),Li|PDOL-SiO_(2) |Li cell shows a steady cycling performance for nearly 1400 h.LFP|PDOL-SiO_(2) |Li battery can steadily cycle at 0.5 C with a capacity retention rate of 89% after 200 cycles.While cycling at 2 C,the capacity retention rate can maintain at 78% after 300 cycles.This contribution provides a innovative strategy for accelerating Li^(+)transportation via designing PDOL molecular chains throughout the SiO_(2) nanofiber framework,which is crucial for high-energy-density LMBs.
基金supported by the National Natural Science Foundation of China(Grant No.51874362,51932011).
文摘The development of low-cost and eco-friendly gel polymer electrolytes (GPEs) with a wide window, ideal compatibility, and structural stability is an effective measure to achieve safe high-energy-density lithium-metal batteries. Herein, a biodegradable composite polyacrylonitrile/poly-L-lactic acid nanofiber membrane (PAL) is synthesized and used as a robust skeleton for GPEs. The 3D nanofiber membrane (PAL-3-C12) prepared with an adjusted weight ratio of polyacrylonitrile (PAN)/poly-L-lactic acid (PLLA) and spinning solution concentration delivers decent thermal stability, biodegradability, and liquid electrolyte absorbability. The “passivation effect” of PAN upon lithium metal is effectively alleviated by hydrogen bonds formed in the PAL chains. These advantages enable PAL GPEs to work stably to 5.17 V while maintaining high ionic conductivity as well as excellent corrosion resistance and dielectric properties. The interfacial compatibility of optimized GPEs promotes the stable operation of a Li||PAL-3-C12 GPEs||Li symmetric battery for 1000 h at 0.15 mA cm^(−2)/0.15 mA h cm^(−2), and the LiFePO4 full cell retains capacity retention of 97.63% after 140 cycles at 1C.