Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied ...Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 ℃ using SiC balls as the counterpart. The Zr-Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 ℃ in air.展开更多
A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxi...A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxides.The catalyst with a Co/Cr molar ratio of 1:2(1 Co2 Cr)and a spinel structure has the best activity(with a reaction rate of 1.38μmol g^–1 s^–1 at 250℃),which is attributed to the synergistic roles of its high surface acidity and good low-temperature reducibility,as evidenced by the temperature-programmed desorption of ammonia,reduction of hydrogen,and surface reaction of propane.Kinetic study shows that the reaction orders of propane and oxygen on the 1 Co2 Cr catalyst(0.58±0.03 and 0.34±0.05,respectively)are lower than those on the 2 Co1 Cr catalyst(0.77±0.02 and 0.98±0.16,respectively)and 1 Co5 Cr(0.66±0.05 and 1.30±0.11,respectively),indicating that the coverages of propane and oxygen on 1 Co2 Cr are higher than those on the other catalysts due to its higher surface acidity and higher reducibility.In addition,in-situ diffuse reflectance infrared spectroscopic investigation reveals that the main surface species on 1 Co2 Cr during the reaction are polydentate carbonate species,which accumulate on the surface at low temperatures(<250℃)but decompose at relatively high temperatures.展开更多
基金Projects(51371145,51431003,U1435201,51401166)supported by the National Natural Science Foundation of ChinaProject(B080401)supported by the Programme of Introducing Talents of Discipline to Universities,China
文摘Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 ℃ using SiC balls as the counterpart. The Zr-Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 ℃ in air.
基金financially supported by the National Natural Science Foundation of China(21773212,21872124)~~
文摘A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxides.The catalyst with a Co/Cr molar ratio of 1:2(1 Co2 Cr)and a spinel structure has the best activity(with a reaction rate of 1.38μmol g^–1 s^–1 at 250℃),which is attributed to the synergistic roles of its high surface acidity and good low-temperature reducibility,as evidenced by the temperature-programmed desorption of ammonia,reduction of hydrogen,and surface reaction of propane.Kinetic study shows that the reaction orders of propane and oxygen on the 1 Co2 Cr catalyst(0.58±0.03 and 0.34±0.05,respectively)are lower than those on the 2 Co1 Cr catalyst(0.77±0.02 and 0.98±0.16,respectively)and 1 Co5 Cr(0.66±0.05 and 1.30±0.11,respectively),indicating that the coverages of propane and oxygen on 1 Co2 Cr are higher than those on the other catalysts due to its higher surface acidity and higher reducibility.In addition,in-situ diffuse reflectance infrared spectroscopic investigation reveals that the main surface species on 1 Co2 Cr during the reaction are polydentate carbonate species,which accumulate on the surface at low temperatures(<250℃)but decompose at relatively high temperatures.