The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-...The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-cost,multi-functional evaporators for treating Cr(Ⅵ)-polluted water remains challenging,and the synergistic mechanism on Cr(Ⅵ)reduction is fuzzy.Herein,we propose the combined strategy of ball milling and solution mixing for the sustainable production of Bi-MOF microrod from waste poly(ethylene terephthalate),and construct Bi-MOF-based solar evaporators for simultaneous photo-Fenton Cr(Ⅵ)reduction and freshwater production.Firstly,the evaporator comprised of Bi-MOF microrod and graphene nanosheet possesses high light absorption,efficient photothermal conversion,and good hydro-philic property.Attributing to the advantages,the hybrid evaporator exhibits the evaporation rate of 2.16 kg m^(-2) h^(-1) and evaporation efficiency of 87.5%under 1 kW m^(-2) of irradiation.When integrating with photo-Fenton reaction,the Cr(Ⅵ)reduction efficiency is 91.3%,along with the reaction kinetics of 0.0548 min^(-1),surpassing many advanced catalysts.In the outdoor freshwater production and Cr(Ⅵ)reduction,the daily accumulative water yield is 5.17 kg m^(-2) h^(-1),and the Cr(Ⅵ)reduction efficiency is 99.9%.Furthermore,we prove that the localization effect derived from the interfacial solar-driven evap-oration enhances H_(2)O_(2) activation for the photo-Fenton reduction of Cr(Ⅵ).Based on the result of density functional theory,Bi-MOF microrod provides rich active centers for H_(2)O_(2) activation to produce active sites such as e-or-O_(2).This study not only proposes a new strategy to construct multi-functional solar evaporators for freshwater production and catalytic reduction of pollutants,but also advances the chem-ical upcycling of waste polyesters.展开更多
Semiconductor photocatalytic technology is widely recognized as one of the most promising technologies to solve current energy and environmental crisis, due to its ability to make effective use of solar energy. In rec...Semiconductor photocatalytic technology is widely recognized as one of the most promising technologies to solve current energy and environmental crisis, due to its ability to make effective use of solar energy. In recent years, graphite carbon nitride(g-C3N4), a new type of non-metallic polymer semiconductor photocatalyst, has rapidly become the focus of intense research in the field of photocatalysis because of its suitable bandgap energy, unique structure, and excellent chemical stability. In order to improve its intrinsic shortages of small specific surface area, narrow visible light response range, high electron-hole pair recombination rate, and low photon quantum efficiency, a simple method was utilized to synthesize Br-doped g-C3N4(CN–Br X, X = 5, 10, 20, 30), where X is a percentage mole ratio of NH4 Br to melamine. Experimental results showed that Br atoms were doped into the g-C3N4 lattice by replacing the bonded N atoms in the form of C–N=C, while the derived material retained the original framework of g-C3N4. The interaction of Br element with the g-C3N4 skeleton not only broadened the visible-light response of g-C3N4 to 800 nm with an adjustable band gap, but also greatly promoted the separation efficiency of the photogenerated charge carrier and the surface area. The photocurrent intensity of bare CN and CN–Br X(X = 5, 10, 20, 30) catalysts is calculated to be 1.5, 2.0, 3.1, 6.5, and 1.9 μA, respectively. And their specific surface area is measured to be 9.086, 9.326, 15.137, 13.397, and 6.932 m2/g. As a result, this Br-doped g-C3N4 gives significantly enhanced photocatalytic reduction of Cr(VI), achieving a twice enhancement over g-C3N4, with high stability during prolonged photocatalytic operation compared to bare g-C3N4 under visible light irradiation. Furthermore, an underlying photocatalytic reduction mechanism was proposed based on control experiments using radical scavengers.展开更多
Investigation on Cr(Ⅵ) reduction was conducted using Pseudomonas aeruginosa. The study demonstrated that the Cr(Ⅵ) can be effectively reduced to Cr(Ⅲ) by Pseudomonas aeruginosa. The effects of the factors affecting...Investigation on Cr(Ⅵ) reduction was conducted using Pseudomonas aeruginosa. The study demonstrated that the Cr(Ⅵ) can be effectively reduced to Cr(Ⅲ) by Pseudomonas aeruginosa. The effects of the factors affecting Cr(Ⅵ) reduction rate including carbon source type, pH, initial Cr(Ⅵ) concentration and amount of cells inoculum were thoroughly studied. Malate was found to yield maximum biotransformation, followed by succinate and glucose, with the reduction rate of 60.86%, 43.76% and 28.86% respectively. The optimum pH for Cr(Ⅵ) reduction was 7.0, with reduction efficiency of 61.71% being achieved. With the increase of initial Cr(Ⅵ) concentration, the rate of Cr(Ⅵ) reduction decreased. The reduction was inhibited strongly when the initial Cr(Ⅵ) concentration increased to 157 mg/L. As the amount of cells inoculum increased, the rate of Cr(Ⅵ) reduction also increased. The mechanism of Cr(Ⅵ) reduction and final products were also analysed. The results suggested that the soluble enzymes appear to be responsible for Cr(Ⅵ) reduction by Pseudomonas aeruginosa, and the reduced Cr(Ⅲ) was not precipitated in the form of Cr(OH) 3.展开更多
Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown Bi...Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown BiOI on graphitic carbon nitride to prepare the BiOI/g-C_(3)N_(4)(BCN)direct Z-scheme heterojunction by solid phase engineering method at room temperature.Experimental result shown the photocatalytic activity of pure BiOI were obviously enhanced by constructing Z-scheme BCN heterostructure,and BCN-3 heterostructure exhibited the optimal photocatalytic degradation of RhB with 98%yield for 2.5 h and reduction of Cr(Ⅵ)with more than 99%yield for 1.5 h at pH=2.Stability test shows BCN-3 still kept more than 98%reduction efficiency after 6 cycles.In addition,we also studied the reduction mechanism that shown the.O_(2)^(-)radicals essentially helped to reduce the Cr(Ⅵ)in aqueous solution under illumination,verified the direct Z-scheme charge transfer path by X-ray photoelectron spectroscopy(XPS)and the free radical trapping experiment.The work open a new way for rationally designing photocatalyst heterostructure to reduce Cr(Ⅵ)to Cr(Ⅲ).展开更多
Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous micro...Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO3-, Mn4+ and Fe3+ and,before SO42- reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.展开更多
Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and charact...Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs.展开更多
The experiments were conducted to evaluate the Cr(Ⅵ)resistance and reduction by Pseudomonas aeruginosa.After this bacterium tolerated 40 mg/L Cr(Ⅵ),the growth of cells was observed.The bacterial growth was obviously...The experiments were conducted to evaluate the Cr(Ⅵ)resistance and reduction by Pseudomonas aeruginosa.After this bacterium tolerated 40 mg/L Cr(Ⅵ),the growth of cells was observed.The bacterial growth was obviously lower than the controls over 24 h and the binary cell fission was observed in cell morphology by scanning electron microscope.P.aeruginosa was found to be able to reduce Cr(Ⅵ)although Cr(Ⅵ)had toxic effects on the cells.The results demonstrate that Cr(Ⅵ)is reduced from 40 mg/L to about 18 mg/L in 72 h.The value of pH drops from 7.02 to around 5.65 after 72 h.A significant increase in the value of redox potential occurs during Cr(Ⅵ)reduction and Cr(Ⅵ)reduction can be observed over a range of redox potential from+3 mV to+91 mV.Both of SO4 2-and NO3 -have no effect on Cr(Ⅵ)reduction.The presence of Zn 2+has a notable inhibitory effect on Cr(Ⅵ) reduction while Cu 2+ substantially stimulates Cr(Ⅵ)reduction.In the presence of Zn 2+ ,Cr(Ⅵ)decreases from 40 mg/L to only 26-27 mg/L,whereas Cr(Ⅵ)drops to 1-2 mg/L after 48 h in the presence of Cu2 +.展开更多
A new coordination polymer,Zn(bpy)L(BUC‐21),(H2L=cis‐1,3‐dibenzyl‐2‐imidazolidone‐4,5‐dicarboxylic acid,bpy=4,4′‐bipyridine),has been synthesized under hydrothermal conditions,and characterized by single‐cry...A new coordination polymer,Zn(bpy)L(BUC‐21),(H2L=cis‐1,3‐dibenzyl‐2‐imidazolidone‐4,5‐dicarboxylic acid,bpy=4,4′‐bipyridine),has been synthesized under hydrothermal conditions,and characterized by single‐crystal X‐ray analysis,Fourier transform infrared spectroscopy,thermogravimetric analyses,CNH elemental analysis and UV‐Vis diffuse reflectance spectroscopy.BUC‐21exhibited an excellent performance for photocatalytic Cr(VI)reduction with a conversion efficiency of96%,better than that of commercial P25(39%),under UV light irradiation for30min.BUC‐21could also be used to conduct photocatalytic degradation of organic dyes including methylene blue,rhodamine B,methyl orange and reactive red X‐3B.Also,the photocatalytic activity of BUC‐21remained high across a wide pH range from2.0to12.0.It is interesting to note,however,that BUC‐21was unable to achieve simultaneous reduction of Cr(VI)and degradation of an organic pollutant in a mixed matrix,which can be attributed to the competition between Cr(VI)and the organic dyes for access to the photo‐excited electrons.展开更多
Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)...Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)with a relative high concentration using different kinds of ZVI powders(mainly carbon differences)including reduced Fe,grey cast iron,pig iron,nodular pig iron was carried out.Parameters such as ZVI dosage,type and size affecting on Cr(VI)reduction were firstly examined and grey cast iron was selected as a preferable reducing material,followed by pig iron.Additionally,it was found that the parameters had significant influences on experimental kinetics.Then,morphology and composition of the sample before and after reaction were characterized by SEM,EPMA and XPS analyses to disclose carbon effect on the reducibility.In order to further interpret reaction mechanism,different reaction models were constructed.It was revealed that not only the carbon content could affect the Cr(VI)reduction,but also the carbon structure had an important effect on its reduction.展开更多
MIL-53(Fe)/polyaniline(PANI) composite was prepared by in situ depositing PANI on the surface of MIL-53(Fe) and their catalytic performances on the simultaneous removal of Rh B and Cr(Ⅵ) were investigated. The elimin...MIL-53(Fe)/polyaniline(PANI) composite was prepared by in situ depositing PANI on the surface of MIL-53(Fe) and their catalytic performances on the simultaneous removal of Rh B and Cr(Ⅵ) were investigated. The elimination efficiency of both RhB and Cr(Ⅵ) reached more than 98% under pH = 2 where hydrochloric acid and citric acid were used to adjust the pH. The results indicated that MIL-53(Fe)/PANI revealed an obvious pH response to the degradation of RhB, while citric acid promoted the Cr(Ⅵ)photoreduction. UV–Vis spectra, EIS, and photocurrent response experiments showed that MIL-53(Fe)/PANI had a better light response and carrier migration ability than MIL-53(Fe). The transient absorption spectra also exhibited that the lifetimes of photo-generated carriers were prolonged after the conductive polymer deposition on the MIL-53(Fe) surface. Scavenger experiments demonstrated that the main active species were·O;-and·OH. Combined with activity evaluation results, and the possible photocatalytic mechanism of MIL-53(Fe)/PANI on RhB oxidation and Cr(Ⅵ) reduction was proposed. The addition of conductive polymer can effectively improve the light response of the catalyst under acidic conditions, and meanwhile citric acid also provided a new mediation for the synergistic degradation of multiple pollutants. Good activity and stability of the catalysts made the scale-up purification of acid water feasible under UV–Vis light.展开更多
Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalyst...Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.展开更多
Chromium(VI)(Cr(VI)),a toxic metal ion,is widely present in industrial wastewater.To reduce the contamination of Cr(VI),many technologies for the photocatalytic reduction of Cr(VI)to Cr(III)have been developed in the ...Chromium(VI)(Cr(VI)),a toxic metal ion,is widely present in industrial wastewater.To reduce the contamination of Cr(VI),many technologies for the photocatalytic reduction of Cr(VI)to Cr(III)have been developed in the past decades.However,the practical application of photocatalysts for the reduction of Cr(VI)inwastewater treatment is often hindered by the complicated photoreduction processes due to the sedimentation and stratification of catalyst particles that present during the treatment of the wastewater.Probing and understanding the influences of the sedimentation and stratification of the catalyst particles on the photoreduction processes are long-term challenges in the field.Herein,we demonstrate that this issue can be solved by using layer location integrated low-field time-domain nuclear magnetic resonance(LF-NMR)relaxometry.With paramagnetic Cr(III)cation as the molecular probe,we successfully monitored the Cr(VI)photoreduction processes by operando probing the 1 H T2 relaxation time of the photoreduction systems.The influences of catalyst sedimentation and the light wavelength on photocatalysis were studied and discussed.The results showed the great potential of LF-NMR relaxometry in the study of Cr(VI)photoreduction processes during industrial wastewater treatments.展开更多
基金supported by the National Natural Science Foundation of China(52373099)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)。
文摘The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-cost,multi-functional evaporators for treating Cr(Ⅵ)-polluted water remains challenging,and the synergistic mechanism on Cr(Ⅵ)reduction is fuzzy.Herein,we propose the combined strategy of ball milling and solution mixing for the sustainable production of Bi-MOF microrod from waste poly(ethylene terephthalate),and construct Bi-MOF-based solar evaporators for simultaneous photo-Fenton Cr(Ⅵ)reduction and freshwater production.Firstly,the evaporator comprised of Bi-MOF microrod and graphene nanosheet possesses high light absorption,efficient photothermal conversion,and good hydro-philic property.Attributing to the advantages,the hybrid evaporator exhibits the evaporation rate of 2.16 kg m^(-2) h^(-1) and evaporation efficiency of 87.5%under 1 kW m^(-2) of irradiation.When integrating with photo-Fenton reaction,the Cr(Ⅵ)reduction efficiency is 91.3%,along with the reaction kinetics of 0.0548 min^(-1),surpassing many advanced catalysts.In the outdoor freshwater production and Cr(Ⅵ)reduction,the daily accumulative water yield is 5.17 kg m^(-2) h^(-1),and the Cr(Ⅵ)reduction efficiency is 99.9%.Furthermore,we prove that the localization effect derived from the interfacial solar-driven evap-oration enhances H_(2)O_(2) activation for the photo-Fenton reduction of Cr(Ⅵ).Based on the result of density functional theory,Bi-MOF microrod provides rich active centers for H_(2)O_(2) activation to produce active sites such as e-or-O_(2).This study not only proposes a new strategy to construct multi-functional solar evaporators for freshwater production and catalytic reduction of pollutants,but also advances the chem-ical upcycling of waste polyesters.
文摘Semiconductor photocatalytic technology is widely recognized as one of the most promising technologies to solve current energy and environmental crisis, due to its ability to make effective use of solar energy. In recent years, graphite carbon nitride(g-C3N4), a new type of non-metallic polymer semiconductor photocatalyst, has rapidly become the focus of intense research in the field of photocatalysis because of its suitable bandgap energy, unique structure, and excellent chemical stability. In order to improve its intrinsic shortages of small specific surface area, narrow visible light response range, high electron-hole pair recombination rate, and low photon quantum efficiency, a simple method was utilized to synthesize Br-doped g-C3N4(CN–Br X, X = 5, 10, 20, 30), where X is a percentage mole ratio of NH4 Br to melamine. Experimental results showed that Br atoms were doped into the g-C3N4 lattice by replacing the bonded N atoms in the form of C–N=C, while the derived material retained the original framework of g-C3N4. The interaction of Br element with the g-C3N4 skeleton not only broadened the visible-light response of g-C3N4 to 800 nm with an adjustable band gap, but also greatly promoted the separation efficiency of the photogenerated charge carrier and the surface area. The photocurrent intensity of bare CN and CN–Br X(X = 5, 10, 20, 30) catalysts is calculated to be 1.5, 2.0, 3.1, 6.5, and 1.9 μA, respectively. And their specific surface area is measured to be 9.086, 9.326, 15.137, 13.397, and 6.932 m2/g. As a result, this Br-doped g-C3N4 gives significantly enhanced photocatalytic reduction of Cr(VI), achieving a twice enhancement over g-C3N4, with high stability during prolonged photocatalytic operation compared to bare g-C3N4 under visible light irradiation. Furthermore, an underlying photocatalytic reduction mechanism was proposed based on control experiments using radical scavengers.
文摘Investigation on Cr(Ⅵ) reduction was conducted using Pseudomonas aeruginosa. The study demonstrated that the Cr(Ⅵ) can be effectively reduced to Cr(Ⅲ) by Pseudomonas aeruginosa. The effects of the factors affecting Cr(Ⅵ) reduction rate including carbon source type, pH, initial Cr(Ⅵ) concentration and amount of cells inoculum were thoroughly studied. Malate was found to yield maximum biotransformation, followed by succinate and glucose, with the reduction rate of 60.86%, 43.76% and 28.86% respectively. The optimum pH for Cr(Ⅵ) reduction was 7.0, with reduction efficiency of 61.71% being achieved. With the increase of initial Cr(Ⅵ) concentration, the rate of Cr(Ⅵ) reduction decreased. The reduction was inhibited strongly when the initial Cr(Ⅵ) concentration increased to 157 mg/L. As the amount of cells inoculum increased, the rate of Cr(Ⅵ) reduction also increased. The mechanism of Cr(Ⅵ) reduction and final products were also analysed. The results suggested that the soluble enzymes appear to be responsible for Cr(Ⅵ) reduction by Pseudomonas aeruginosa, and the reduced Cr(Ⅲ) was not precipitated in the form of Cr(OH) 3.
基金supported by the National Natural Science Foundation of China under Grant(No.51871078)Heilongjiang Science Foundation(No.E2018028)
文摘Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown BiOI on graphitic carbon nitride to prepare the BiOI/g-C_(3)N_(4)(BCN)direct Z-scheme heterojunction by solid phase engineering method at room temperature.Experimental result shown the photocatalytic activity of pure BiOI were obviously enhanced by constructing Z-scheme BCN heterostructure,and BCN-3 heterostructure exhibited the optimal photocatalytic degradation of RhB with 98%yield for 2.5 h and reduction of Cr(Ⅵ)with more than 99%yield for 1.5 h at pH=2.Stability test shows BCN-3 still kept more than 98%reduction efficiency after 6 cycles.In addition,we also studied the reduction mechanism that shown the.O_(2)^(-)radicals essentially helped to reduce the Cr(Ⅵ)in aqueous solution under illumination,verified the direct Z-scheme charge transfer path by X-ray photoelectron spectroscopy(XPS)and the free radical trapping experiment.The work open a new way for rationally designing photocatalyst heterostructure to reduce Cr(Ⅵ)to Cr(Ⅲ).
基金Project(2018SK2044)supported by the Innovation Program of Science&Technology of Hunan Province,ChinaProject(51304250)supported by the National Natural Science Foundation of China
文摘Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO3-, Mn4+ and Fe3+ and,before SO42- reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.
基金supported by the National Natural Science Foundation of China(51578034,51878023)the Great Wall Scholars Training Program Project of Beijing Municipality Universities(CIT&TCD20180323)+3 种基金the Project of Construction of Innovation Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(IDHT20170508)the Beijing Talent Project(2017A38)the Fundamental Research Funds for Beijing Universities(X18075/X18076/X18124/X18125/X18276)the Scientific Research Foundation of Beijing University of Civil Engineering and Architecture(KYJJ2017033/KYJJ2017008)~~
文摘Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs.
基金Project(IRT0719)supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProjects(2006BAD03A1704,2006BAD03A1706)supported by the National Science&Technology Pillar Program during the 11th Five-year Plan Period of China
文摘The experiments were conducted to evaluate the Cr(Ⅵ)resistance and reduction by Pseudomonas aeruginosa.After this bacterium tolerated 40 mg/L Cr(Ⅵ),the growth of cells was observed.The bacterial growth was obviously lower than the controls over 24 h and the binary cell fission was observed in cell morphology by scanning electron microscope.P.aeruginosa was found to be able to reduce Cr(Ⅵ)although Cr(Ⅵ)had toxic effects on the cells.The results demonstrate that Cr(Ⅵ)is reduced from 40 mg/L to about 18 mg/L in 72 h.The value of pH drops from 7.02 to around 5.65 after 72 h.A significant increase in the value of redox potential occurs during Cr(Ⅵ)reduction and Cr(Ⅵ)reduction can be observed over a range of redox potential from+3 mV to+91 mV.Both of SO4 2-and NO3 -have no effect on Cr(Ⅵ)reduction.The presence of Zn 2+has a notable inhibitory effect on Cr(Ⅵ) reduction while Cu 2+ substantially stimulates Cr(Ⅵ)reduction.In the presence of Zn 2+ ,Cr(Ⅵ)decreases from 40 mg/L to only 26-27 mg/L,whereas Cr(Ⅵ)drops to 1-2 mg/L after 48 h in the presence of Cu2 +.
基金supported by the National Natural Science Foundation of China(51578034)the Beijing Natural Science Foundation&Scientific Research Key Program of Beijing Municipal Commission of Education(KZ201410016018)+1 种基金Beijing Talent Project(2016023)Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(IDHT20170508)~~
文摘A new coordination polymer,Zn(bpy)L(BUC‐21),(H2L=cis‐1,3‐dibenzyl‐2‐imidazolidone‐4,5‐dicarboxylic acid,bpy=4,4′‐bipyridine),has been synthesized under hydrothermal conditions,and characterized by single‐crystal X‐ray analysis,Fourier transform infrared spectroscopy,thermogravimetric analyses,CNH elemental analysis and UV‐Vis diffuse reflectance spectroscopy.BUC‐21exhibited an excellent performance for photocatalytic Cr(VI)reduction with a conversion efficiency of96%,better than that of commercial P25(39%),under UV light irradiation for30min.BUC‐21could also be used to conduct photocatalytic degradation of organic dyes including methylene blue,rhodamine B,methyl orange and reactive red X‐3B.Also,the photocatalytic activity of BUC‐21remained high across a wide pH range from2.0to12.0.It is interesting to note,however,that BUC‐21was unable to achieve simultaneous reduction of Cr(VI)and degradation of an organic pollutant in a mixed matrix,which can be attributed to the competition between Cr(VI)and the organic dyes for access to the photo‐excited electrons.
基金Project(51604131)supported by the National Natural Science Foundation of ChinaProject(2017FB084)supported by the Yunnan Province Applied Basic Research,China+1 种基金Project(KKSY201563041)supported by the Talent&Training Program of Yunnan Province,ChinaProjects(2017T20090159,2018T20150055)supported by the Testing and Analyzing Funds of Kunming University of Science and Technology,China
文摘Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)with a relative high concentration using different kinds of ZVI powders(mainly carbon differences)including reduced Fe,grey cast iron,pig iron,nodular pig iron was carried out.Parameters such as ZVI dosage,type and size affecting on Cr(VI)reduction were firstly examined and grey cast iron was selected as a preferable reducing material,followed by pig iron.Additionally,it was found that the parameters had significant influences on experimental kinetics.Then,morphology and composition of the sample before and after reaction were characterized by SEM,EPMA and XPS analyses to disclose carbon effect on the reducibility.In order to further interpret reaction mechanism,different reaction models were constructed.It was revealed that not only the carbon content could affect the Cr(VI)reduction,but also the carbon structure had an important effect on its reduction.
基金the financial support from the National Natural Science Foundation of China (Nos. 21908018 and 22078174)Key Technology Research and Development Program of Shandong (No. 2017GSF217008)Qi Lu Young Scholar Start-up Foundation of Shandong University
文摘MIL-53(Fe)/polyaniline(PANI) composite was prepared by in situ depositing PANI on the surface of MIL-53(Fe) and their catalytic performances on the simultaneous removal of Rh B and Cr(Ⅵ) were investigated. The elimination efficiency of both RhB and Cr(Ⅵ) reached more than 98% under pH = 2 where hydrochloric acid and citric acid were used to adjust the pH. The results indicated that MIL-53(Fe)/PANI revealed an obvious pH response to the degradation of RhB, while citric acid promoted the Cr(Ⅵ)photoreduction. UV–Vis spectra, EIS, and photocurrent response experiments showed that MIL-53(Fe)/PANI had a better light response and carrier migration ability than MIL-53(Fe). The transient absorption spectra also exhibited that the lifetimes of photo-generated carriers were prolonged after the conductive polymer deposition on the MIL-53(Fe) surface. Scavenger experiments demonstrated that the main active species were·O;-and·OH. Combined with activity evaluation results, and the possible photocatalytic mechanism of MIL-53(Fe)/PANI on RhB oxidation and Cr(Ⅵ) reduction was proposed. The addition of conductive polymer can effectively improve the light response of the catalyst under acidic conditions, and meanwhile citric acid also provided a new mediation for the synergistic degradation of multiple pollutants. Good activity and stability of the catalysts made the scale-up purification of acid water feasible under UV–Vis light.
基金the support of the National Natural Science Foundation of China (51702087 and 21673066)~~
文摘Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.
基金supported by the National Natural Science Foundation of China(grant nos.22072045,21603073,and 21574043)the Ministry of Science and Technology of the People's Republic of China(grant no.2018YFC1602800)Xing-FuZhi-Hua Foundation of ECNU and Microscale Magnetic Resonance Platform of ECNU and the Microscale Magnetic Resonance Platform of ECNU.
文摘Chromium(VI)(Cr(VI)),a toxic metal ion,is widely present in industrial wastewater.To reduce the contamination of Cr(VI),many technologies for the photocatalytic reduction of Cr(VI)to Cr(III)have been developed in the past decades.However,the practical application of photocatalysts for the reduction of Cr(VI)inwastewater treatment is often hindered by the complicated photoreduction processes due to the sedimentation and stratification of catalyst particles that present during the treatment of the wastewater.Probing and understanding the influences of the sedimentation and stratification of the catalyst particles on the photoreduction processes are long-term challenges in the field.Herein,we demonstrate that this issue can be solved by using layer location integrated low-field time-domain nuclear magnetic resonance(LF-NMR)relaxometry.With paramagnetic Cr(III)cation as the molecular probe,we successfully monitored the Cr(VI)photoreduction processes by operando probing the 1 H T2 relaxation time of the photoreduction systems.The influences of catalyst sedimentation and the light wavelength on photocatalysis were studied and discussed.The results showed the great potential of LF-NMR relaxometry in the study of Cr(VI)photoreduction processes during industrial wastewater treatments.