In this paper, Cr-doped LiSrAlF6 crystals are investigated using high-temperature Raman spectroscopy and the single-crystal Raman spectra of Cr:LiSrAlF6 are analysed by factor group theory and comparison with other f...In this paper, Cr-doped LiSrAlF6 crystals are investigated using high-temperature Raman spectroscopy and the single-crystal Raman spectra of Cr:LiSrAlF6 are analysed by factor group theory and comparison with other fluorides. The results indicate that Cr:LiSrAlF6 is stable below its melting point; Raman peaks located at 561,322 and 250 cm-1 are assigned to the Alg modes of AlF6, SrF6 and LiF6 octachdra, respectively; with temperature increasing, Raman peaks associated with AlF6 octahedra shift towards low frequencies, while LiF6 and SrF6 octahedra are temperature- insensitive; around the crystal melting point, three new Raman peaks occur, which are associated with the AlF6 octahedral chain structure. Finally, the microstruetural evolution of Cr:LiSrAlF6 from room temperature to its melting point is discussed based on its Raman spectra.展开更多
为提高热轧态0Cr21A16合金板材的组织均匀性和塑性,以改善其高温性能及冷加工特性,分析研究了不同温度的热处理试验及组织性能。采用光学显微镜、X射线衍射仪、Gleeble高温热拉伸实验、扫描电镜和纳米压痕仪等研究了热处理前后0Cr21Al6...为提高热轧态0Cr21A16合金板材的组织均匀性和塑性,以改善其高温性能及冷加工特性,分析研究了不同温度的热处理试验及组织性能。采用光学显微镜、X射线衍射仪、Gleeble高温热拉伸实验、扫描电镜和纳米压痕仪等研究了热处理前后0Cr21Al6合金板材的显微组织和力学性能。结果表明,通过热处理的方式改善0Cr21Al6合金板材的组织均匀性,在960℃保温6 min 40 s后快速冷却,晶粒平均尺寸为42μm,整体的晶粒尺寸相对于940、980、1000、1020℃热处理后较为均匀、细小,硬度和塑性达到最佳匹配,断裂韧度KIC在960℃处理下达到最佳,拥有最佳的综合性能,可有效避免生产过程中材料的脆性断裂问题。另外Gleeble实验显示1000℃以上的热处理温度不再适合于热加工。展开更多
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50932005) and the Open Poject of Shanghai Key Laboratory of Modern Metallurgy and Materials Processing (Grant No. SELF-2009-01).
文摘In this paper, Cr-doped LiSrAlF6 crystals are investigated using high-temperature Raman spectroscopy and the single-crystal Raman spectra of Cr:LiSrAlF6 are analysed by factor group theory and comparison with other fluorides. The results indicate that Cr:LiSrAlF6 is stable below its melting point; Raman peaks located at 561,322 and 250 cm-1 are assigned to the Alg modes of AlF6, SrF6 and LiF6 octachdra, respectively; with temperature increasing, Raman peaks associated with AlF6 octahedra shift towards low frequencies, while LiF6 and SrF6 octahedra are temperature- insensitive; around the crystal melting point, three new Raman peaks occur, which are associated with the AlF6 octahedral chain structure. Finally, the microstruetural evolution of Cr:LiSrAlF6 from room temperature to its melting point is discussed based on its Raman spectra.
文摘为提高热轧态0Cr21A16合金板材的组织均匀性和塑性,以改善其高温性能及冷加工特性,分析研究了不同温度的热处理试验及组织性能。采用光学显微镜、X射线衍射仪、Gleeble高温热拉伸实验、扫描电镜和纳米压痕仪等研究了热处理前后0Cr21Al6合金板材的显微组织和力学性能。结果表明,通过热处理的方式改善0Cr21Al6合金板材的组织均匀性,在960℃保温6 min 40 s后快速冷却,晶粒平均尺寸为42μm,整体的晶粒尺寸相对于940、980、1000、1020℃热处理后较为均匀、细小,硬度和塑性达到最佳匹配,断裂韧度KIC在960℃处理下达到最佳,拥有最佳的综合性能,可有效避免生产过程中材料的脆性断裂问题。另外Gleeble实验显示1000℃以上的热处理温度不再适合于热加工。