CrN and Cr-Al-N coatings were deposited by reactive magnetron sputtering on the glass substrate,and their corrosion behavior was studied. The electrochemical tests using both DC(polarization curves) and AC techniques(...CrN and Cr-Al-N coatings were deposited by reactive magnetron sputtering on the glass substrate,and their corrosion behavior was studied. The electrochemical tests using both DC(polarization curves) and AC techniques(EIS) were carried out on Potentiostat/Galvanstat(EG&G) in 3.5%(mass fraction) NaCl solution. After immersed into NaCl solution for 1 h,the mass of the CrN coating keeps constant with the time continuing. This can be explained by the passivation of the coating. The comparison between the corrosion potential(φcorr) of the Cr-Al-N coatings with different aluminum contents reveals that the corrosion potentials of the aluminum contain coatings are nobler than that of the CrN coatings. This means that the addition of aluminum shifts the corrosion potential to more positive potential value. Among these coatings,CrN in NaCl solution exhibits the worst corrosion resistance,while the corrosion resistance of Cr0.63Al0.37N in NaCl solution is the best. The polarization data and EIS data suggest that addition of aluminum can improve the corrosion resistance of CrN coating.展开更多
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were...A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.展开更多
To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was d...To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings.展开更多
Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutt...Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutting tools,a multi-scale simulation approach is proposed that encompasses the microstructure evolution of coatings considering the entire preparation and service lifecycle of PVD TiAlN coatings.This scheme employs phase-field simulation to capture the essential microstructure of the PVD-prepared TiAlN coatings.Moreover,cutting simulation is used to determine the service temperature experienced during cutting processes at varying rates.Cahn-Hilliard modeling is finally utilized to consume the microstructure and service condition data to acquaint the microstructure evolution of TiAlN coatings throughout the cutting processes.This methodology effectively establishes a correlation between service temperature and its impact on the microstructure evolution of TiAlN coatings.It is expected that the present multi-scale numerical simulation approach will provide innovative strategies for assisting property design and lifespan prediction of TiAlN coatings.展开更多
Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc...Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating.展开更多
Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HA...Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF).展开更多
Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing comp...Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents.展开更多
Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequ...Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequate strength limit their applicability.To overcome this,the direct current magnetron sputtering technique is employed for surface coating in Mg-based alloys using various zirconium(Zr)content.This approach presents a promising strategy for simultaneously improving corrosion resistance,maintaining biocompatibility,and enhancing strength without compromising osseointegration.By leveraging Mg’s inherent biodegradability,it has the potential to minimize the need for secondary surgeries,thereby reducing costs and resources.This paper is a systematic study aimed at understanding the corrosion mechanisms of Mg–Zr coatings,denoted Mg-xZr(x=0–5 at.%).Zr-doped coatings exhibited columnar growth leading to denser and refined structures with increasing Zr content.XRD analysis confirmed the presence of the Mg(00.2)basal plane,shifting towards higher angles(1.15°)with 5 at.%Zr doping due to lattice parameter changes(i.e.,decrease and increase of“c”and“a”lattice parameters,respectively).Mg–Zr coatings exhibited“liquidphilic”behavior,while Young’s modulus retained a steady value around 80 GPa across all samples.However,the hardness has significantly improved across all samples’coating,reaching the highest value of(2.2±0.3)GPa for 5 at.%Zr.Electrochemical testing in simulated body fluid(SBF)at 37℃ revealed a significant enhancement in corrosion resistance for Mg–Zr coatings containing 1.0–3.4 at.%Zr.Compared with the 5 at.%Zr coating which exhibited a corrosion rate of 32 mm/year,these coatings displayed lower corrosion rates,ranging from 1 to 12 mm/year.This synergistic enhancement in mechanical properties and corrosion resistance,achieved with 2.0–3.4 at.%Zr,suggests potential ability for reducing stress shielding and controlled degradation performance,and consequently,promising functional biodegradable materials for temporary bone implants.展开更多
In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S...In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S.aureus),was impregnated into the coating.Samples with vancomycin showed high bactericidal activity against S.aureus.The mechanical and electrochemical properties of the formed coatings were studied,as well as in vitro cytotoxicity tests and in vivo tests on mature male rats were performed.According to SEM,EDS,XRD and XPS data,coatings had a developed morphology and contained hydroxyapatite,which indicates high biocompatibility.The analysis of roughness of coatings without and with vancomycin did not reveal any differences,confirming the high roughness of the samples.During electrochemical tests,an increase in corrosion resistance by more than two times after the application of PEO coatings was revealed.According to the results of an in vivo study,after 28 days of the implantation of samples with calcium phosphate PEO coating and vancomycin,no signs of inflammation were observed,while an inflammatory reaction developed in the area of implantation of bare alloy,followed by encapsulation.Antibiotic release tests from the coatings show a sharp decrease in the concentration of the released antibiotic on day 7 and then a gradual decrease until day 28.Throughout the experiment,no significant deviations in the condition and behavior of the animals were observed;clinical tests did not reveal a systemic toxic reaction.展开更多
This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to...This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to coatings layered on leather,but could also be employed as a green alternative to petroleum-based carcinogen styrene(St).Herein,MV was copolymerized with butyl acrylate(BA)to obtain waterborne bio-based P(MV-BA)miniemulsion via miniemulsion polymerization.Subsequently,MXene nanosheets with excellent photothermal conversion performance and antibacterial properties,were introduced into the P(MV-BA)miniemulsion by ultrasonic dispersion.During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface,MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene,which prompted its full exposure to light and bacteria,exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy.In particular,when the dosage of MXene nanosheets was 1.4 wt%,the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsioncoated leather(PML)increased by about 15℃ in an outdoor environment during winter,and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100%under the simulated sunlight treatment for 30 min.Moreover,the introduction of MXene nanosheets increased the air permeability,water vapor permeability,and thermal stability of these coatings.This study provides a new insight into the preparation of novel,green,and waterborne bio-based nanocomposite coatings for leather,with desired warmth retention and antibacterial properties.It can not only realize zerocarbon heating based on sunlight in winter,reducing the use of fossil fuels and greenhouse gas emissions,but also improve ability to fight off invasion by harmful bacteria,viruses,and other microorganisms.展开更多
To investigate the influences of Cr2AlC mass fraction and supersonic plasma spraying process on the microstructure and mechanical properties of Cr2AlC reinforced 410 stainless steel composite coatings,the coatings con...To investigate the influences of Cr2AlC mass fraction and supersonic plasma spraying process on the microstructure and mechanical properties of Cr2AlC reinforced 410 stainless steel composite coatings,the coatings containing different mass fractions of Cr2AlC were prepared and investigated.The composite coating exhibited low porosity and high adhesion strength.The addition of Cr2AlC significantly enhanced the hardness of the composite coatings through particle strengthening.However,when the mass fraction of Cr2AlC was 20%,the aggregation of Cr2AlC resulted in a strong decrease in the coating preparation efficiency,as well as a decline in adhesion strength.In the supersonic plasma spraying process,the Ar flow rate mainly influenced the flight velocity of the particles,while the H2 flow rate and the current mainly affected the temperature of the plasma torch.Consequently,all of them influenced the melting degree of particles and the quality of the coating.The lowest porosity and the highest hardness and adhesion strength could be obtained when the Ar flow rate is 125 L/min,the H2 flow rate is 25 L/min,and the current is 385 A.展开更多
The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced ...The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.展开更多
The present study investigates the physical and chemical characteristics,behavior in vitro and in vivo,and biocompatibility of coatings containing Ta_(2)O_(5),which are obtained by plasma electrolytic oxidation(PEO)on...The present study investigates the physical and chemical characteristics,behavior in vitro and in vivo,and biocompatibility of coatings containing Ta_(2)O_(5),which are obtained by plasma electrolytic oxidation(PEO)on MA8 magnesium alloy.The obtained coatings demonstrate in vivo biocompatibility and in vitro bioactivity.Compared to the base PEO coating,the layers containing Ta_(2)O_(5)facilitate the development of apatite in simulated body fluid,suggesting that the inclusion of nanoparticles improves bioactivity of the coatings.It was found that incorporation of Ta_(2)O_(5)nanoparticles increases roughness and porosity of the formed layers by increasing particle concentration in electrolytes for the PEO process contributing to sufficient soft tissue ingrowth in vivo.Based on in vivo studies,these coatings also provide favorable tissue response and minimal inflammatory reaction in comparison with the bare magnesium alloy due to protection of living tissues from deleterious corrosion events of magnesium implant such as local alkalization and intense hydrogen evolution.The results obtained in the present study concluded biocompatibility,tissue integration of the PEO coatings containing Ta_(2)O_(5)nanoparticles making them a promising protective layer for biodegradable magnesium implants.展开更多
On account of the Mori-Tanaka approach,the effective elastic performance of composites containing decagonal symmetric two-dimensional(2D)quasicrystal(QC)coatings is studied.Explicit expressions for the effective elast...On account of the Mori-Tanaka approach,the effective elastic performance of composites containing decagonal symmetric two-dimensional(2D)quasicrystal(QC)coatings is studied.Explicit expressions for the effective elastic constants of rare-earth QC reinforced magnesium-based composites are provided.Detailed discussion is presented on the effects of the volume fraction of the inclusions,the aspect ratio of the inclusions,the coating thickness,and the coating material parameters on the effective elastic constants of the composites.The results indicate that considering the coating increases the effective elastic constants of the composites to some extent.展开更多
Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off...Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off,resulting in damage to the blades and causing eco-nomic losses.Therefore,it is necessary to analyze the friction between the blades and the coating.In this paper,three ceramic-based high-temperature seal coatings with different polyphenylene ester contents and a pure Yttria-stabilised zirconia coating were prepared by atmo-spheric plasma spraying(APS).The hardness and modulus of elasticity of the coated surfaces were obtained by hardness and modulus of elasticity tests,and the coatings were subjected to high-speed touch abrasion tests.The Hertzian contact model was used to calculate the maximum normal contact load on the coating during the process.The test values were compared with the theoretical values and it was found that the calculated values were always greater than the test values.In order to make the Hertzian contact model more accurate in calculating the touching and abrasion forces,the contact coefficients in the Hertzian contact model were optimized.Substituting the optimized coeffi-cients into the Hertzian contact model,the results show that the calculated results after optimizing the coefficients are much closer to the test values,with deviations from the test values ranging from 1%to 38%.展开更多
This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil...This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.展开更多
In this article,NiCr coatings with chromium content of 13%,27%and 41%were prepared by arc spraying.They were exposed in molten salts(NaCl-Na_(2)SO_(4))at 800℃for 200 hours.The effect of chromium content on the hot co...In this article,NiCr coatings with chromium content of 13%,27%and 41%were prepared by arc spraying.They were exposed in molten salts(NaCl-Na_(2)SO_(4))at 800℃for 200 hours.The effect of chromium content on the hot corrosion behavior of the coatings was in-vestigated.X-ray diffraction(XRD)and scanning electron microscope with energy dispersion spectrum(SEM-EDS)were used to analyze the phase compositions,morphologies and chemical compositions of the coatings.The results show that NiCr13 coating exhibited the worst hot corrosion resistance due to the low chromium content,which resulted in NiO being the major reaction product.It should be noted that the hot corrosion resistance of NiCr27 coating was better than that of NiCr41 coating.The basic fluxing of Cr_(2)O_(3) lowered its protection during the hot corrosion process and led to the formation of porous Cr_(2)O_(3) on the NiCr41 coating.The molten salts accelerated the oxidation reac-tion resulting in thicker and porous oxide scales formed on the surfaces of coatings.展开更多
Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame reta...Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.展开更多
Ceramic coatings play a keyrole in extending the service life of materials in aerospaceandenergy fields byprotectingmaterials from high temperature,oxidation,corrosion and thermal stress.Non-oxide and high entropy cer...Ceramic coatings play a keyrole in extending the service life of materials in aerospaceandenergy fields byprotectingmaterials from high temperature,oxidation,corrosion and thermal stress.Non-oxide and high entropy ceramics are new emerging coating materials which have been researched and developed in recent years.Compared with traditional oxide ceramics,non-oxide ceramics have better high temperature stability,oxidation resistance and erosion resistance.These characteristics make non-oxide ceramics perform well in extreme environments.It is particularly noteworthy that the non-oxide high entropy ceramic is a uniform solid solution composed of at least four or fiveatoms.Their unique structure and outstanding propertiesshow great potential application in the field of coating.In this paper,the researches aboutregulating microstructure,preparation technology and properties of nitride and its high entropy system,carbide and its high entropy system and boride and its high entropy system in coating field are summarized,and their future development and prospects are prospected.展开更多
This paper mainly introduces the research progress on interface failure behavior in high-temperature alloy surface thermal barrier coating systems.The degradation failure and structural evolution behavior during high-...This paper mainly introduces the research progress on interface failure behavior in high-temperature alloy surface thermal barrier coating systems.The degradation failure and structural evolution behavior during high-temperature service were analyzed for the matrix/bonding layer interface,bonding layer/TGO interface,and TGO/ceramic layer interface in thermal barrier coatings.The research focus and direction that affect the interface performance of thermal barrier coatings were proposed.展开更多
基金Project (50371095) supported by the National Natural Science Foundation of China
文摘CrN and Cr-Al-N coatings were deposited by reactive magnetron sputtering on the glass substrate,and their corrosion behavior was studied. The electrochemical tests using both DC(polarization curves) and AC techniques(EIS) were carried out on Potentiostat/Galvanstat(EG&G) in 3.5%(mass fraction) NaCl solution. After immersed into NaCl solution for 1 h,the mass of the CrN coating keeps constant with the time continuing. This can be explained by the passivation of the coating. The comparison between the corrosion potential(φcorr) of the Cr-Al-N coatings with different aluminum contents reveals that the corrosion potentials of the aluminum contain coatings are nobler than that of the CrN coatings. This means that the addition of aluminum shifts the corrosion potential to more positive potential value. Among these coatings,CrN in NaCl solution exhibits the worst corrosion resistance,while the corrosion resistance of Cr0.63Al0.37N in NaCl solution is the best. The polarization data and EIS data suggest that addition of aluminum can improve the corrosion resistance of CrN coating.
基金financially supported by the National Natural Science Foundation of China (No.52271073)。
文摘A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.
基金the National Key R&D Program of China(2023YFB3812901)the Postdoctoral Fellowship Program of CPSF(No.GZC20230239)+1 种基金the China Postdoctoral Science Foundation(No.2023M740219)the National Natural Science Foundation of China(No.22209094)。
文摘To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings.
基金support from Youth Fund of the National Natural Science Foundation of China(Grant No.52101028)China Postdoctoral Science Foundation(Grant No.2021M703628)Natural Science Foundation of Hunan Province(Grant No.2022JJ40629)is acknowledged.
文摘Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutting tools,a multi-scale simulation approach is proposed that encompasses the microstructure evolution of coatings considering the entire preparation and service lifecycle of PVD TiAlN coatings.This scheme employs phase-field simulation to capture the essential microstructure of the PVD-prepared TiAlN coatings.Moreover,cutting simulation is used to determine the service temperature experienced during cutting processes at varying rates.Cahn-Hilliard modeling is finally utilized to consume the microstructure and service condition data to acquaint the microstructure evolution of TiAlN coatings throughout the cutting processes.This methodology effectively establishes a correlation between service temperature and its impact on the microstructure evolution of TiAlN coatings.It is expected that the present multi-scale numerical simulation approach will provide innovative strategies for assisting property design and lifespan prediction of TiAlN coatings.
基金Funded by Shenzhen-Hong Kong Innovative Collaborative Research and Development Program (Nos.SGLH20181109 110802117, CityU 9240014)Innovation Project of Southwestern Institute of Physics (Nos.202001XWCXYD002, 202301XWCX003)CNNC Young Talent Program (No.2023JZYF-01)。
文摘Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating.
基金the National Council of Humanities,Science,and Technology(CONAHCYT)through the"Investigadores por Mexico"program,projects 848 and 881。
文摘Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF).
基金the National Key Research and Development Program of China(2018YFC1106703)the National Natural Science Foundation of China(No.U1804251)。
文摘Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents.
基金support by the project n°7225-ILLIANCE High Performing EnergyPro-jeto apoiado pelo PRR-Plano de Recuperação e Resiliência e pelos Fundos Europeus Next Generation EU,no sequência do AVISO N.°02/C05-i01/2022,Componente 5-Capital-ização e Inovação Empresarial-Agendas Mobilizadores para a Inovação Empresarialsupport by national funds through FCT-Fundação para a Ciência e a Tecnologia,under the project UID/EMS/00285/2020,ARISE-LA/P/0112/2020.
文摘Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequate strength limit their applicability.To overcome this,the direct current magnetron sputtering technique is employed for surface coating in Mg-based alloys using various zirconium(Zr)content.This approach presents a promising strategy for simultaneously improving corrosion resistance,maintaining biocompatibility,and enhancing strength without compromising osseointegration.By leveraging Mg’s inherent biodegradability,it has the potential to minimize the need for secondary surgeries,thereby reducing costs and resources.This paper is a systematic study aimed at understanding the corrosion mechanisms of Mg–Zr coatings,denoted Mg-xZr(x=0–5 at.%).Zr-doped coatings exhibited columnar growth leading to denser and refined structures with increasing Zr content.XRD analysis confirmed the presence of the Mg(00.2)basal plane,shifting towards higher angles(1.15°)with 5 at.%Zr doping due to lattice parameter changes(i.e.,decrease and increase of“c”and“a”lattice parameters,respectively).Mg–Zr coatings exhibited“liquidphilic”behavior,while Young’s modulus retained a steady value around 80 GPa across all samples.However,the hardness has significantly improved across all samples’coating,reaching the highest value of(2.2±0.3)GPa for 5 at.%Zr.Electrochemical testing in simulated body fluid(SBF)at 37℃ revealed a significant enhancement in corrosion resistance for Mg–Zr coatings containing 1.0–3.4 at.%Zr.Compared with the 5 at.%Zr coating which exhibited a corrosion rate of 32 mm/year,these coatings displayed lower corrosion rates,ranging from 1 to 12 mm/year.This synergistic enhancement in mechanical properties and corrosion resistance,achieved with 2.0–3.4 at.%Zr,suggests potential ability for reducing stress shielding and controlled degradation performance,and consequently,promising functional biodegradable materials for temporary bone implants.
基金supported by Russian Science Foundation Grant no.22-73-10149,https://rscf.ru/project/22-73-10149/supported by the Russian Science Foundation Grant no.23-13-00329,https://rscf.ru/project/23-13-00329/。
文摘In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S.aureus),was impregnated into the coating.Samples with vancomycin showed high bactericidal activity against S.aureus.The mechanical and electrochemical properties of the formed coatings were studied,as well as in vitro cytotoxicity tests and in vivo tests on mature male rats were performed.According to SEM,EDS,XRD and XPS data,coatings had a developed morphology and contained hydroxyapatite,which indicates high biocompatibility.The analysis of roughness of coatings without and with vancomycin did not reveal any differences,confirming the high roughness of the samples.During electrochemical tests,an increase in corrosion resistance by more than two times after the application of PEO coatings was revealed.According to the results of an in vivo study,after 28 days of the implantation of samples with calcium phosphate PEO coating and vancomycin,no signs of inflammation were observed,while an inflammatory reaction developed in the area of implantation of bare alloy,followed by encapsulation.Antibiotic release tests from the coatings show a sharp decrease in the concentration of the released antibiotic on day 7 and then a gradual decrease until day 28.Throughout the experiment,no significant deviations in the condition and behavior of the animals were observed;clinical tests did not reveal a systemic toxic reaction.
基金supported by the National Natural Science Foundation of China and(52073164 and 21838007).
文摘This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to coatings layered on leather,but could also be employed as a green alternative to petroleum-based carcinogen styrene(St).Herein,MV was copolymerized with butyl acrylate(BA)to obtain waterborne bio-based P(MV-BA)miniemulsion via miniemulsion polymerization.Subsequently,MXene nanosheets with excellent photothermal conversion performance and antibacterial properties,were introduced into the P(MV-BA)miniemulsion by ultrasonic dispersion.During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface,MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene,which prompted its full exposure to light and bacteria,exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy.In particular,when the dosage of MXene nanosheets was 1.4 wt%,the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsioncoated leather(PML)increased by about 15℃ in an outdoor environment during winter,and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100%under the simulated sunlight treatment for 30 min.Moreover,the introduction of MXene nanosheets increased the air permeability,water vapor permeability,and thermal stability of these coatings.This study provides a new insight into the preparation of novel,green,and waterborne bio-based nanocomposite coatings for leather,with desired warmth retention and antibacterial properties.It can not only realize zerocarbon heating based on sunlight in winter,reducing the use of fossil fuels and greenhouse gas emissions,but also improve ability to fight off invasion by harmful bacteria,viruses,and other microorganisms.
基金supported by the Beijing Natural Science Foundation(Grant No.3232011)the Joint Fund of the Ministry of Education for Equipment Pre-research(Grant No.8091B02022306)the National Natural Science Foundation of China(Grant No.52175284).
文摘To investigate the influences of Cr2AlC mass fraction and supersonic plasma spraying process on the microstructure and mechanical properties of Cr2AlC reinforced 410 stainless steel composite coatings,the coatings containing different mass fractions of Cr2AlC were prepared and investigated.The composite coating exhibited low porosity and high adhesion strength.The addition of Cr2AlC significantly enhanced the hardness of the composite coatings through particle strengthening.However,when the mass fraction of Cr2AlC was 20%,the aggregation of Cr2AlC resulted in a strong decrease in the coating preparation efficiency,as well as a decline in adhesion strength.In the supersonic plasma spraying process,the Ar flow rate mainly influenced the flight velocity of the particles,while the H2 flow rate and the current mainly affected the temperature of the plasma torch.Consequently,all of them influenced the melting degree of particles and the quality of the coating.The lowest porosity and the highest hardness and adhesion strength could be obtained when the Ar flow rate is 125 L/min,the H2 flow rate is 25 L/min,and the current is 385 A.
基金the financial support from the National Natural Science Foundation of China(Nos.51572061,51621091,and 51321061)the Heilongjiang Touyan Team Program。
文摘The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.
基金The formation of coatings,as well as SEM,EDS,FTIR spectroscopy and mechanical studies was supported by Russian Science Foundation grant No.22-73-10149,https://rscf.ru/project/22-73-10149/The electrochemical studies,in vitro and in vivo studies was supported by the Russian Science Foundation grant No.23-13-00329,https://rscf.ru/project/23-13-00329/。
文摘The present study investigates the physical and chemical characteristics,behavior in vitro and in vivo,and biocompatibility of coatings containing Ta_(2)O_(5),which are obtained by plasma electrolytic oxidation(PEO)on MA8 magnesium alloy.The obtained coatings demonstrate in vivo biocompatibility and in vitro bioactivity.Compared to the base PEO coating,the layers containing Ta_(2)O_(5)facilitate the development of apatite in simulated body fluid,suggesting that the inclusion of nanoparticles improves bioactivity of the coatings.It was found that incorporation of Ta_(2)O_(5)nanoparticles increases roughness and porosity of the formed layers by increasing particle concentration in electrolytes for the PEO process contributing to sufficient soft tissue ingrowth in vivo.Based on in vivo studies,these coatings also provide favorable tissue response and minimal inflammatory reaction in comparison with the bare magnesium alloy due to protection of living tissues from deleterious corrosion events of magnesium implant such as local alkalization and intense hydrogen evolution.The results obtained in the present study concluded biocompatibility,tissue integration of the PEO coatings containing Ta_(2)O_(5)nanoparticles making them a promising protective layer for biodegradable magnesium implants.
基金Project supported by the Inner Mongolia Natural Science Foundation of China(No.2021MS01013)。
文摘On account of the Mori-Tanaka approach,the effective elastic performance of composites containing decagonal symmetric two-dimensional(2D)quasicrystal(QC)coatings is studied.Explicit expressions for the effective elastic constants of rare-earth QC reinforced magnesium-based composites are provided.Detailed discussion is presented on the effects of the volume fraction of the inclusions,the aspect ratio of the inclusions,the coating thickness,and the coating material parameters on the effective elastic constants of the composites.The results indicate that considering the coating increases the effective elastic constants of the composites to some extent.
基金supported by Basic Research Funds for Central Universities(3122019189).
文摘Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off,resulting in damage to the blades and causing eco-nomic losses.Therefore,it is necessary to analyze the friction between the blades and the coating.In this paper,three ceramic-based high-temperature seal coatings with different polyphenylene ester contents and a pure Yttria-stabilised zirconia coating were prepared by atmo-spheric plasma spraying(APS).The hardness and modulus of elasticity of the coated surfaces were obtained by hardness and modulus of elasticity tests,and the coatings were subjected to high-speed touch abrasion tests.The Hertzian contact model was used to calculate the maximum normal contact load on the coating during the process.The test values were compared with the theoretical values and it was found that the calculated values were always greater than the test values.In order to make the Hertzian contact model more accurate in calculating the touching and abrasion forces,the contact coefficients in the Hertzian contact model were optimized.Substituting the optimized coeffi-cients into the Hertzian contact model,the results show that the calculated results after optimizing the coefficients are much closer to the test values,with deviations from the test values ranging from 1%to 38%.
文摘This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.
基金supported by Corporate Talent Fund Program of Zhengzhou Research Institute of Mechanical Engineering Co.,Ltd.(No.201SJ2023013)the Faculty of Materials and Manufacturing,Beijing University of Technology.
文摘In this article,NiCr coatings with chromium content of 13%,27%and 41%were prepared by arc spraying.They were exposed in molten salts(NaCl-Na_(2)SO_(4))at 800℃for 200 hours.The effect of chromium content on the hot corrosion behavior of the coatings was in-vestigated.X-ray diffraction(XRD)and scanning electron microscope with energy dispersion spectrum(SEM-EDS)were used to analyze the phase compositions,morphologies and chemical compositions of the coatings.The results show that NiCr13 coating exhibited the worst hot corrosion resistance due to the low chromium content,which resulted in NiO being the major reaction product.It should be noted that the hot corrosion resistance of NiCr27 coating was better than that of NiCr41 coating.The basic fluxing of Cr_(2)O_(3) lowered its protection during the hot corrosion process and led to the formation of porous Cr_(2)O_(3) on the NiCr41 coating.The molten salts accelerated the oxidation reac-tion resulting in thicker and porous oxide scales formed on the surfaces of coatings.
文摘Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.
文摘Ceramic coatings play a keyrole in extending the service life of materials in aerospaceandenergy fields byprotectingmaterials from high temperature,oxidation,corrosion and thermal stress.Non-oxide and high entropy ceramics are new emerging coating materials which have been researched and developed in recent years.Compared with traditional oxide ceramics,non-oxide ceramics have better high temperature stability,oxidation resistance and erosion resistance.These characteristics make non-oxide ceramics perform well in extreme environments.It is particularly noteworthy that the non-oxide high entropy ceramic is a uniform solid solution composed of at least four or fiveatoms.Their unique structure and outstanding propertiesshow great potential application in the field of coating.In this paper,the researches aboutregulating microstructure,preparation technology and properties of nitride and its high entropy system,carbide and its high entropy system and boride and its high entropy system in coating field are summarized,and their future development and prospects are prospected.
文摘This paper mainly introduces the research progress on interface failure behavior in high-temperature alloy surface thermal barrier coating systems.The degradation failure and structural evolution behavior during high-temperature service were analyzed for the matrix/bonding layer interface,bonding layer/TGO interface,and TGO/ceramic layer interface in thermal barrier coatings.The research focus and direction that affect the interface performance of thermal barrier coatings were proposed.