期刊文献+
共找到1,696篇文章
< 1 2 85 >
每页显示 20 50 100
Effect of Mn addition on microstructure and mechanical properties of GX40CrNiSi25-12 austenitic heat resistant steel
1
作者 Guan-yu Jiang Meng-wu Wu +2 位作者 Xiao-guang Yang Hui Wang Yu-yuan Zhu 《China Foundry》 SCIE EI CAS CSCD 2024年第3期205-212,共8页
Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and... Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases. 展开更多
关键词 austenitic heat resistant steel MANGANESE MICROSTRUCTURE mechanical properties
下载PDF
Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel 被引量:7
2
作者 Lin-qing Xu Dan-tian Zhang +4 位作者 Yong-chang Liu Bao-qun Ning Zhi-xia Qiao Ze-sheng Yan Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期438-447,共10页
Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this ... Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi- croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for- mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro- structural evolution and hardness variation, the process of tempering can be separated into three steps. 展开更多
关键词 ferritic steel heat resisting TEMPERING PRECIPITATION MARTENSITE COARSENING
下载PDF
Microstructural Evolution of 2.25Cr-1.6W-V-Nb Heat Resistant Steel during Creep 被引量:6
3
作者 LihuiZHU XuemingMA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期126-128,共3页
2.25Cr-1.6W-V-Nb developed in Japan, is a low alloy heat resistant steel with good comprehensive properties. Influence of long term creep at elevated temperature on the structure of 2.25Cr-1.6W-V-Nb steel was studied ... 2.25Cr-1.6W-V-Nb developed in Japan, is a low alloy heat resistant steel with good comprehensive properties. Influence of long term creep at elevated temperature on the structure of 2.25Cr-1.6W-V-Nb steel was studied in this paper, and the micromechanism of creep strength degradation was elucidated, too. Both TEM observation and thermodynamic calculation reveal that during creep the transformation occurs from M7C3 and M23C6 to M6C, which can be cavity nucleation sites. Besides, creep at 600癈 also leads to the decrease of dislocation density, the coarsening and coalescence of M23C6, the nucleation of cavities and development of cracks. The strength decrease of 2.25Cr-1.6W-V-Nb steel after long term creep is related to the decrease of dislocation hardening, precipitation hardening, solution hardening, the nucleation of cavities and development of cracks. 展开更多
关键词 heat resistant steel CREEP Microstructural evolution
下载PDF
Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging 被引量:4
4
作者 Ying-hui Zhou Chen-xi Liu +2 位作者 Yong-chang Liu Qian-ying Guo Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第3期283-293,共11页
In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitr... In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900℃ for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes ofMX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800-900℃, the mean activation energy was 294 kJ·mol -1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms. 展开更多
关键词 austenitic steel heat resistance CARBONITRIDES COARSENING NANOPARTICLES DIFFUSION thermal aging
下载PDF
Hot deformation behavior of Super304H austenitic heat resistant steel 被引量:3
5
作者 Shu-ping Tan Zhen-hua Wang +2 位作者 Shi-chang Cheng Zheng-dong Liu Jie-cai Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第2期167-172,共6页
The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800-1200℃and 0.005-5 s^-1 using a Gleeble 3500 thermal-mechanical simulator,and its deformation behavior was analyzed.The res... The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800-1200℃and 0.005-5 s^-1 using a Gleeble 3500 thermal-mechanical simulator,and its deformation behavior was analyzed.The results show that the flow stress of Super304H steel decreases with the decrease of strain rate and the increase of deformation temperature; the hot deformation activation energy of the steel is 485 kJ/mol.The hot deformation equation and the relationship between the peak stress and the deformation temperature and strain rate is obtained.The softening caused by deformation heating cannot be neglected when both the deformation temperature and strain rate are higher. 展开更多
关键词 austenitic steel heat resistant hot deformation flow stress dynamic recrystallization
下载PDF
High-temperature oxidation behavior of heat resistant stainless steel 1.4828 被引量:1
6
作者 ZHANG Zhixia BI Hongyun LI Xing 《Baosteel Technical Research》 CAS 2014年第3期13-17,共5页
The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed t... The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204. 展开更多
关键词 1. 4828 heat resistant stainless steel high-temperature oxidation KINETIC oxide layer
下载PDF
Effect of Aluminium and Silicon on High Temperature Oxidation Resistance of Fe-Cr-Ni Heat Resistant Steel 被引量:1
7
作者 王海涛 赵奇 +3 位作者 于化顺 张振亚 崔红卫 闵光辉 《Transactions of Tianjin University》 EI CAS 2009年第6期457-462,共6页
Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test ... Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200 ℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr203, α-Al2O3, SiO2 and Fe (Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200 ℃. Its oxidation weight gain rate is only 0.081 g/(m^2.h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties. 展开更多
关键词 heat resistant steel oxide scale oxidation resistance
下载PDF
DETERMINATION AND APPLICATION OF LARSON-MILLER PARAMETER FOR HEAT RESISTANT STEEL 12CrlMoV AND 15CrMo 被引量:15
8
作者 R.C.Yang K.Chen +1 位作者 H.X.Feng H.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期471-476,共6页
Based on the analysis and processing on relative empirical formula and data, C-values in Larson-Miller (P) expression, P= T(C + Igt), have determined for pearlitic heat resistant steel 12Cr1MoV and 15CrMo(20.62 and 20... Based on the analysis and processing on relative empirical formula and data, C-values in Larson-Miller (P) expression, P= T(C + Igt), have determined for pearlitic heat resistant steel 12Cr1MoV and 15CrMo(20.62 and 20.30). The simulation experiments of high temperature aging, heated from 1.5 to 873 hours, have been designed and performed for its verification. And in combination with published information and the present nearly quantitative works, it has further been verified that both the degradations of microstructures and mechanical properties show a good accuracy and practicability using the Larson-Miller parameter with the present determined C-values. Finally, the effects of carbon content on C-value are analyzed by the empirical electron theory of solids and molecules (EET). 展开更多
关键词 pearlitic heat-resistant steel Larson-Miller parameter AGING valence electron structure
下载PDF
Effect of aging temperature on the microstructures and mechanical properties of ZG12Cr9Mo1Co1NiVNbNB ferritic heat-resistant steel 被引量:1
9
作者 Xue Yang Lan Sun +3 位作者 Ji Xiong Ping Zhou Hong-yuan Fan Jian-yong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期168-175,共8页
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr... The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project. 展开更多
关键词 heat resistant steel aging temperature precipitates microstructure mechanical properties
下载PDF
VARIATION OF SUBSTRUCTURES OF PEARLITIC HEAT RESISTANT STEEL AFTER HIGH TEMPERATURE AGING 被引量:2
10
作者 R.C.Yang K.Chen +1 位作者 H.X.Feng H.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期477-481,共5页
The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic ... The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phase-transformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably. 展开更多
关键词 pearlitic heat-resistant steel AGING RECOVERY DISLOCATION SUBSTRUCTURE dislocation cell
下载PDF
Influence of Creep Strength of Weld on Interfacial Creep Damage of Dissimilar Welded Joint between Martensitic and Bainitic Heat-Resistant Steel 被引量:1
11
作者 张建强 ZHANG Guodong +1 位作者 LUO Chuanhong ZHANG Yinglin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期178-183,共6页
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(... The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel. 展开更多
关键词 martensitic heat-resistant steel bainitic heat-resistant steel dissimilar metal welding joint creep damage interracial failure
下载PDF
Evaluation and modification of inclusion characteristics in HK40 heatresistant cast steel 被引量:1
12
作者 Ali Navaei Reza Eslami-Farsani Majid Abbasi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第4期354-359,共6页
Specifications of inclusions such as the type, morphology, number, composition, size, and place of inclusions in HK40 heat-resistant casting steel were studied by optical microscopy and scanning electron microscopy eq... Specifications of inclusions such as the type, morphology, number, composition, size, and place of inclusions in HK40 heat-resistant casting steel were studied by optical microscopy and scanning electron microscopy equipped with an energy-dispersive spectroscopy system. The effects of calcium silicide (CaSi) addition on these characteristics were evaluated at two pouring temperatures of 1420℃ and 1470℃. It was found that most of the appeared inclusions were in the type of chromium oxide. CaSi addition had a significant effect on the morphological modification, size and distribution of inclusions as well as changing the composition to oxide-sulfide compounds. 展开更多
关键词 heat-resistant steel INCLUSIONS calcium silicide MODIFICATION
下载PDF
Microstructure and Corrosion Resistance of CrN and CrN/TiN Coated Heat-Resistant Steels in Molten Aluminum Alloy 被引量:1
13
作者 LinCS PengH 《特种铸造及有色合金》 CAS CSCD 北大核心 2001年第S1期168-171,共4页
The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical ... The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva... 展开更多
关键词 CRN CrN/TiN heat-resistant steels MICROSTRUCTURE Corrosion resistance Molten Aluminum Alloy
下载PDF
Characterization and Modelling of High Temperature Flow Behaviour of V Modified 2.25Cr-1Mo Heat Resistant Steel Plate
14
作者 刘自立 刘春明 +1 位作者 DING Jianhua ZHANG Hanqian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期192-199,共8页
In order to study the high temperature flow behaviour of the V modified 2.25Cr-1Mo steel plate to guide the industrial rolling practice, the hot compression tests were carried out at the temperatures from 900 ℃ to 11... In order to study the high temperature flow behaviour of the V modified 2.25Cr-1Mo steel plate to guide the industrial rolling practice, the hot compression tests were carried out at the temperatures from 900 ℃ to 1150 ℃ and the strain rates from 0.01s^-1 to 1 s^-1 on Thermecmastor-Z equipment. Based on the experimental data of the hot compression tests, a kind of Arrhenius-type constitutive equation was developed.The equation can accurately show the relationship between the flow stress and the deformation temperature, the strain and the strain rate. The measured true stress-true strain curves exhibit two kinds of flow stress curves. Moreover, the forming mechanisms of these two types curves were explained by softening, wok hardening theory as well as metallographic and hardness experimental results. The accuracy of the developed Arrheniustype constitutive equation was identified by three kinds of statistic parameters and also by comparison of the measured and predicted data. The reasonable value of the three types of statistic parameters and the good agreement between the experimental and predicted data can confirm the validity of the developed Arrheniustype constitutive equation for V modified 2.25 Cr-1 Mo heat resistant steel plate. 展开更多
关键词 flow behaviour CHARACTERIZATION modelling V MODIFIED 2.25CR-1MO steel heat resistant steel PLATE
下载PDF
Characterization of precipitates in 9%Cr heat resistant steel
15
作者 GAO Jiaqiang,HONG Jie,XIAO Xinxing,LIU Junliang and WANG Qijiang Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期124-,共1页
Precipitation strengthening as well as solution strengthening is key mechanism for heat resistant steels.It is very important to characterize the precipitates in 9%Cr ferrite heat resistant steels,especially to show t... Precipitation strengthening as well as solution strengthening is key mechanism for heat resistant steels.It is very important to characterize the precipitates in 9%Cr ferrite heat resistant steels,especially to show the nanometer-sized particles.By transmission electronic microscope attached with an energy dispersive spectrometer as well as optical microscope,scanning electronic microscope,the microstructure and chemical composition of precipitates in a 9%Cr heat resistant steel after different heat treatments were investigated.It was found that the microstructure of normalized sample was martensite with fine NbC and Fe_3C.The microstructure of tempered sample is tempered martensite,and there mainly were two types of precipitates,M_(23)C_6 with the size range of 50 - 300 nm and MX with the size of 10 - 100 nm.Superfine M_(23)C_6 precipitated preferably on prior austenitic grain boundaries and martensitic lath boundaries,while nanometer-sized MX precipitates were distributed randomly. After short-term creep,Laves phase formed along grain boundaries of the 9%Cr steel,and M_(23) C_6 and MX precipitates were found to become coarser.More information about precipitates in the 9%Cr steel had been exhibited by atomic force microscopy.Thereby,distribution,size and shape of the precipitates as well as their compositions and structures were revealed. 展开更多
关键词 characterisation MICROSTRUCTURE nanometer-sized precipitates heat resistant steel atomic force microscopy
下载PDF
EFFECT OF W ON MECHANICAL PROPERTIES OF 12%Cr HEAT-RESISTANT STEEL
16
作者 FUJITA Toshio 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第2期95-100,共6页
The effect of W on mechanical properties of 12% Cr-W-V-Nb heat resistant steel at high temperatures and room temperature is reported.The experimental results indicated that if the W content was about 2.2—3.0 wt-%,the... The effect of W on mechanical properties of 12% Cr-W-V-Nb heat resistant steel at high temperatures and room temperature is reported.The experimental results indicated that if the W content was about 2.2—3.0 wt-%,there was no obviously change of R.T.tensile strength, but impact toughness decreased with the rise of W content.On the other hand,the increase of W content enhanced the short time stress rupture strength,but did not for the long time one. The increase of W have two effects on the precipitation behavior,promoting Laves formation of type Fe_2W,increasing the precipitated phase amount and speeding up the coarsening pro- cess of precipitated phase at high temperatures.The effect of W on the mechanical properties is closely associated with precipitation behaviors.When the rupture life is short,there has no enough time to coarsen the precipitated phases,so the increase of precipitated phases results in strengthening effect,i.e.the W increases the high temperature strength.After prolonged expo- sure,the evident coarsening took plaee,that decreased the effect of precipitation. 展开更多
关键词 12%Cr-W-V-Nb steel martensitic heat-resistant steel Laves phase precipitation behavior
下载PDF
Development and Application of a Heat-resistant Low Ni Steel Modified by Rare Earth for Furnace Roller
17
作者 张庆登 《Journal of Rare Earths》 SCIE EI CAS CSCD 1991年第1期51-56,共6页
The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high tempera... The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high temperature,and the oxidation rate is decreased.This film has so good adhesion to the matrix that it will not be peeled off easily.The RE modified steel has excellent oxidation resistance and thermal strength even if being used continuously for a long period at high temperature.This steel roller has a service life of about 4 years com- parable to high Ni steel ones,so the low Ni steel can replace high Ni steel to make furnace roller.The Ni content of this material can be reduced by 65% in comparison with Cr25Ni20Si2 steel,The low Ni steel has better pro- eessing properties including melting,casting and working properties than that of high Ni ones. 展开更多
关键词 Rare earth heat-resistant low Ni steel turnace roller
下载PDF
Investigation on the strengthening mechanism of S30432 austenitic heat-resistant steel
18
作者 ZHU Lihui~(1)),ZHANG Yujie~(1)),WANG Qijiang~(2)) and XU Songqian~(2)) 1) School of Materials Science and Engineering,Shanghai University,Shanghai 200072,China 2) Baoshan Iron & Steel Co.,Ltd.,Shanghai 200940,China 《Baosteel Technical Research》 CAS 2010年第S1期71-,共1页
From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam ... From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam conditions,good mechanical properties(particularly high creep strength),corrosion resistance and fabricability are generally required for the heat resistant steels used in USC boilers.Among these heat-resistant steels,S30432 austenitic heat-resistant steels are of interest due to high creep strength,excellent oxidation and corrosion resistance at temperatures up to 650 -700℃.In this paper,the strengthening mechanism of S30432 austenitic heat-resistant steel was investigated based on the precipitation behavior of S30432 during aging and creep at 650℃.Results show that the microstructure of as-supplied S30432 steel is austenite,the main precipitation consists of only Nb(C,N).After aged for 10 000 h or crept for 10 712 h,there is a slight increase in the size of fine Nb(C,N),but the transformation from Nb(C,N) to NbCrN does not occur.Aging and creep results in the precipitation ofε-Cu and M_(23)C_6.The coarsening velocity ofε-Cu particles diminishes greatly and they are still very fine in the long-term creep range.With the increase of aging and creep time M_(23)C_6 carbides tend to coarsen gradually.The size of M_(23)C_6 is larger and the coarsening is easier in contrast toε-Cu and Nb(C,N).Nb(C,N) precipitates in the as-supplied microstructure,while aging and creep result in the precipitation ofε-Cu and M_(23)C_6.High creep rupture strength of S30432 steel is attributed to the precipitation hardening ofε-Cu,Nb(C,N) and M_(23)C_6.Extremely,ε-Cu plays an important role in improving the creep rupture strength of S30432,and at least 61%of the creep rupture strength of S30432 at 650℃results from the precipitation hardening ofε-Cu particles. 展开更多
关键词 heat-resistant steel strengthening mechanism precipitation hardening
下载PDF
Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint 被引量:4
19
作者 赵东升 闫久春 刘玉君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1966-1970,共5页
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ... The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time. 展开更多
关键词 INTERMETALLICS titanium alloy stainless steel transition joint heat resistance heat treatment hot roll bonding
下载PDF
Influence of Microstructure and Second Phase Precipitation by Adding Al-Ti on the Mechanical Behavior of Austenitic Heat Resistant Steel Castings
20
作者 W. EI-Ghazaly A. Y. Shash S. EI-Ghazaly 《材料科学与工程(中英文B版)》 2016年第5期241-248,共8页
关键词 耐热钢铸件 NI3AL Ni3Ti 力学行为 奥氏体 金属间化合物 力学性能 过热处理
下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部