In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composi...In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45#steel>μHigh chromium cast iron/45#steel>μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.展开更多
Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Partic...Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.展开更多
In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure ...In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry(EDS), electron probe microanalysis(EPMA), scanning electron microscope(SEM) and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as(Cr, W, Fe)23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA(69.5 HRC) is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.展开更多
A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sinteri...A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sintering.This Fe_(2)O_(3)-MWNTs composite,intended to be used as an anode material for lithium-ion batteries,maintained a reversible capacity as high as 896.3 mA·h/g after 100 cycles at a current density of 100 mA/g and the initial coulombic efficiency reached 75.5%.The rate capabilities of the Fe_(2)O_(3)-MWNTs composite,evaluated using the ratios of capacity at 100,200,500,1000,2000 and 100 mA/g after every 10 cycles,were determined to be 904.7,852.1,759.0,653.8,566.8 and 866.3 mA·h/g,respectively.Such a superior electrochemical performance of the Fe_(2)O_(3)-MWNTs composite is mainly attributed to the reinforced concrete construction,in which the MWNTs function as the skeleton and conductive network.Such a structure contributes to shortening the transport pathways for both Li+and electrons,enhancing conductivity and accommodating volume expansion during prolonged cycling.This Fe_(2)O_(3)-MWNTs composite with the designed structure is a promising anode material for high-performance lithium-ion batteries.展开更多
基金supported by the Special Important Technology of Guangdong Province,China(2009A080304010,2011A080802003)the Core Technology Research and Strategic Emerging Industries of Guangdong Province,China(2012A090100018)
文摘In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45#steel>μHigh chromium cast iron/45#steel>μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.
基金supported by the National Natural Science Foundation of China under Grant Nos.51271191,51571205 and 51401209
文摘Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.
基金financially supported by the Special Important Technology of Guangdong Province,China(2009A080304010,2011A080802003)the Core Technology Research and Strategic Emerging Industries of Guangdong Province,China(2012A090100018)
文摘In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry(EDS), electron probe microanalysis(EPMA), scanning electron microscope(SEM) and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as(Cr, W, Fe)23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA(69.5 HRC) is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.
基金National Natural Science Foundation of China(Nos.21471100,21704066)Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515010241)Shenzhen Natural Science Fund,China(the Stable Support Plan Program)(No.20200813081943001).
文摘A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sintering.This Fe_(2)O_(3)-MWNTs composite,intended to be used as an anode material for lithium-ion batteries,maintained a reversible capacity as high as 896.3 mA·h/g after 100 cycles at a current density of 100 mA/g and the initial coulombic efficiency reached 75.5%.The rate capabilities of the Fe_(2)O_(3)-MWNTs composite,evaluated using the ratios of capacity at 100,200,500,1000,2000 and 100 mA/g after every 10 cycles,were determined to be 904.7,852.1,759.0,653.8,566.8 and 866.3 mA·h/g,respectively.Such a superior electrochemical performance of the Fe_(2)O_(3)-MWNTs composite is mainly attributed to the reinforced concrete construction,in which the MWNTs function as the skeleton and conductive network.Such a structure contributes to shortening the transport pathways for both Li+and electrons,enhancing conductivity and accommodating volume expansion during prolonged cycling.This Fe_(2)O_(3)-MWNTs composite with the designed structure is a promising anode material for high-performance lithium-ion batteries.