期刊文献+
共找到332篇文章
< 1 2 17 >
每页显示 20 50 100
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:1
1
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys
2
作者 Yong Wang Wei Wang +1 位作者 Joo Hyun Park Wangzhong Mu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1639-1650,共12页
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5... Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation. 展开更多
关键词 high-entropy alloy non-metallic inclusion AGGLOMERATION thermodynamics alloyING
下载PDF
Accelerated intermetallic phase amorphization in a Mg-based high-entropy alloy powder
3
作者 Prince Sharma Purvam Mehulkumar Gandhi +4 位作者 Kerri-Lee Chintersingh Mirko Schoenitz Edward L.Dreizin Sz-Chian Liou Ganesh Balasubramanian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1792-1798,共7页
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe... We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing. 展开更多
关键词 high-entropy alloy High-energy milling Antisite disorder AMORPHOUS INTERMETALLIC
下载PDF
Comprehensive insights into recent innovations:Magnesium-inclusive high-entropy alloys
4
作者 Andrii Babenko Ehsan Ghasali +6 位作者 Saleem Raza Kahila Baghchesaraee Ye Cheng Asif Hayat Peng Liu Shuaifei Zhao Yasin Orooji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1311-1345,共35页
This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs we... This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure. 展开更多
关键词 MAGNESIUM high-entropy alloys CLASSIFICATION Thermodynamic parameters Physical parameters
下载PDF
Evolution of helium bubbles in FeCoNiCr-based high-entropy alloys containing γ′ nanoprecipitates
5
作者 冯婷 蒋胜明 +4 位作者 胡潇天 张子骏 黄子敬 董士刚 张建 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期491-500,共10页
A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in... A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy. 展开更多
关键词 high-entropy alloys irradiation resistance coherent precipitates helium bubbles
下载PDF
Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy
6
作者 Ning Wang Kai Ma +3 位作者 Qiu-da Li Yu-dong Yuan Yan-chun Zhao Li Feng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期147-158,共12页
AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentat... AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentation,and electronic universal testing.The results indicate that the AlCrCuFeMnxhigh-entropy alloy exhibits a dendritic structure,consisting of dendrites with a BCC structure,interdendrite regions with an FCC structure,and precipitates with an ordered BCC structure that form within the dendrite.Manganese(Mn)has a strong affinity for dendritic,interdendritic,and precipitate structures,allowing it to easily enter these areas.With an increase in Mn content,the size of the precipitated nanoparticles in the dendritic region initially increases and then decreases.Similarly,the area fraction initially decreases and then increases.Additionally,the alloy’s strength and wear resistance decrease,while its plasticity increases.The Al Cr Cu Fe Mn1.5alloy boasts excellent mechanical properties,including a hardness of 360 HV and a wear rate of 2.4×10^(-5)mm^(3)·N^(-1)·mm^(-1).It also exhibits impressive yield strength,compressive strength,and deformation rates of 960 MPa,1,700 MPa,and 27.5%,respectively. 展开更多
关键词 high-entropy alloys MICROSTRUCTURE mechanical properties wear resistance strengthening mechanisms
下载PDF
Atomistic evaluation of tension–compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
7
作者 邢润龙 刘雪鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期613-622,共10页
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In... The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires. 展开更多
关键词 high-entropy alloys body-centered-cubic NANOWIRE tension–compression asymmetry atomistic simulations
下载PDF
High-entropy alloys in thermoelectric application:A selective review
8
作者 任凯 霍文燚 +3 位作者 陈帅 程渊 王彪 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期1-11,共11页
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ... Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy. 展开更多
关键词 high-entropy alloys thermoelectric materials thermal conduction
下载PDF
Enhanced strength-ductility synergy via high dislocation density-induced strain hardening in nitrogen interstitial CrMnFeCoNi high-entropy alloy
9
作者 Huabing Li Yu Han +5 位作者 Hao Feng Gang Zhou Zhouhua Jiang Minghui Cai Yizhuang Li Mingxin Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第10期184-192,共9页
The present work demonstrates that nitrogen doping inhibits the formation of deformation twins in a CrMnFeCoNi high entropy alloy,while significantly increases the strength without sacrificing much duc-tility at 77 K.... The present work demonstrates that nitrogen doping inhibits the formation of deformation twins in a CrMnFeCoNi high entropy alloy,while significantly increases the strength without sacrificing much duc-tility at 77 K.Microstructural characterization and first-principles calculations were employed to unveil the role of interstitial nitrogen atoms in obtaining such an excellent combination of strength and ductility at 77 K.It is found that nitrogen addition increases generalized stacking fault energy(GSFE)and reduces twinning.However,the pinning of dislocations by nitrogen atoms effectively suppresses dislocation cross-slip and dynamic recovery and in turn,promotes the accumulation of dislocations.The high dislocation density induces a high strain hardening capacity and improves uniform elongation,which compensates for the ductility loss accompanied by solid solution strengthening.The effect of nitrogen doping enriches the design concept of high-and medium-entropy alloys,providing an economical and effective strategy to develop ultra-high-performance alloys that are suitable for cryogenic applications. 展开更多
关键词 high-entropy alloy INTERSTITIALS Mechanical properties First-principles calculations Stacking fault energy
原文传递
High-Entropy Alloys to Activate the Sulfur Cathode for Lithium-Sulfur Batteries 被引量:1
10
作者 Zhenyu Wang Hailun Ge +2 位作者 Sheng Liu Guoran Li Xueping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期40-49,共10页
Sulfur element possesses an ultrahigh theoretical specific capacity,while the utilization of sulfur in the whole cathode is lower obviously owing to the sluggish kinetics of sulfur and discharged products,limiting the... Sulfur element possesses an ultrahigh theoretical specific capacity,while the utilization of sulfur in the whole cathode is lower obviously owing to the sluggish kinetics of sulfur and discharged products,limiting the enhancement on energy density of lithium-sulfur batteries.Herein,for the first time,Fe_(0.24)Co_(0.26)Ni_(0.10)Cu_(0.15)Mn_(0.25)high-entropy alloy is introduced as the core catalytic host to activate the electrochemical performance of the sulfur cathode for lithium-sulfur batteries.It is manifested that Fe_(0.24)Co_(0.26)Ni_(0.10)Cu_(0.15)Mn_(0.25)high-entropy alloy nanocrystallites distributed on nitrogen-doped carbon exhibit high electrocatalytic activity toward the conversion of solid sulfur to solid discharged products across soluble intermediate lithium polysulfides.In particular,benefiting from the accelerated kinetics by high-entropy alloy nanocrystallites and synergistic adsorption by nitrogen-doped carbon,the cathode exhibits high reversible capacity of 1079.5 mAh g_(-cathode)^(-1)(high utilization of 89.4%)with the whole cathode as active material,instead of sulfur element.Moreover,under both lean electrolyte(3μmg^(-1))and ultrahigh sulfur loading(27.0 mg cm^(-2))condition,the high discharge capacity of 868.2 mAh g_(-cathode)^(-1)can be still achieved for the sulfur cathode.This strategy opens up a new path to explore catalytic host materials for enhancing the utilization of sulfur in the whole cathode for lithium-sulfur batteries. 展开更多
关键词 catalytic host electrochemical performance high-entropy alloy lithium–sulfur batteries sulfur cathode
下载PDF
High He-ion irradiation resistance of CrMnFeCoNi high-entropy alloy revealed by comparison study with Ni and 304SS 被引量:6
11
作者 Lixin Yang Hualong Ge +8 位作者 Jian Zhang Ting Xiong Qianqian Jin Yangtao Zhou Xiaohong Shao Bo Zhang Zhengwang Zhu Shijian Zheng Xiuliang Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期300-305,共6页
High entropy alloys(HEAs) have presented potential applications in nuclear power plants owing to their novel atomic structure based high irradiation resistance. However, understanding of He-ion irradiation of HEAs is ... High entropy alloys(HEAs) have presented potential applications in nuclear power plants owing to their novel atomic structure based high irradiation resistance. However, understanding of He-ion irradiation of HEAs is still lacking. In this work, we reveal He-ion irradiation resistance of HEA CrMnFeCoNi by comparison study with a pure Ni and a 304 stainless steel(304SS). It is found that the damage structure in the three materials can be characterized with He bubbles and stacking faults/stacking fault tetrahedrons((SFs/SFTs), which show a similar depth distribution after He-ion irradiation at both RT and 450℃.Although the He bubbles have a similar size about 2nm after irradiation at RT, the He bubble sizes of the HEA, 304SS, and Ni increase to 4.0±0.9,5.3±1.0 and 6.7 ±1.0 nm after irradiation at 450℃, respectively. Moreover, the density of SFs/SFTs displays in an order of Ni < 304 SS < HEA at both RT and 450℃.The He-ion irradiation at RT causes significant hardness enhancement for the three materials, however,compared to RT, after irradiation at 450℃, the Ni presents softening, while the 304SS, especially the HEA,shows further hardening. Thus, the HEA CrMnFeCoNi possesses the smallest He bubble size, the densest SFs/SFTs, and the highest hardening, indicating the best structural stability, as well as the best He-ion irradiation resistance, which can be attributed to its low mobility of He atoms and point defects. 展开更多
关键词 HIGH entroy alloy(HEA) crmnfeconi He-ion IRRADIATION HARDENING
原文传递
Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition 被引量:16
12
作者 Jinfeng Li Shuo Xiang +9 位作者 Hengwei Luan Abdukadir Amar Xue Liu Siyuan Lu Yangyang Zeng Guomin Le Xiaoying Wang Fengsheng Qu Chunli Jiang Guannan Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2430-2434,共5页
Laser melting deposition with WC addition has been developed to fabricate high-strength CrMnFeCoNibased high-entropy alloys-based composites.By this technique,a microstructure of compact refined equiaxed grains can be... Laser melting deposition with WC addition has been developed to fabricate high-strength CrMnFeCoNibased high-entropy alloys-based composites.By this technique,a microstructure of compact refined equiaxed grains can be achieved,and the tensile strength can be remarkably improved.The sample with 5 wt%WC addition shows a promising mechanical performance with a tensile strength of 800 MPa and an elongation of 37%.The improvement in mechanical property may be attributed to the formation of Cr(23)C6 reinforcement precipitates,which could promote the heterogeneous nucleation of grains and hinder the propagation of slip bands. 展开更多
关键词 high-entropy alloys Laser metal deposition PRECIPITATES MICROSTRUCTURES Tensile test
原文传递
1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion 被引量:5
13
作者 Young-Kyun Kim Min-Chul Kim Kee-Ahn Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第2期10-19,共10页
CrMnFeCoNi high-entropy alloys(HEAs)exhibit an excellent combination of tensile strength and ductility at cryogenic temperatures.This study led to the introduction of a new method for the development of high-performan... CrMnFeCoNi high-entropy alloys(HEAs)exhibit an excellent combination of tensile strength and ductility at cryogenic temperatures.This study led to the introduction of a new method for the development of high-performance CrMnFeCoNi HEAs at cryogenic temperatures by jointly utilizing additive manufacturing(AM)and the addition of interstitial atoms.The interstitial oxygen present in the powder feedstock was transformed into beneficial nano-sized oxides during AM processing.The HEA nanocomposite fabricated using laser powder bed fusion(L-PBF)not only contains heterogeneous grains and substructures but also a high number density of nano-sized oxides.The tensile results revealed that the L-PBF HEA nanocomposite has superior yield strengths of 0.77 GPa and 1.15 GPa,and tensile strengths of 0.92 GPa and 1.45 GPa at 298 K and 77 K,respectively.In addition,the Charpy impact energies of the samples tested at 298 K and 77 K were measured as 176.2 J and 103.7 J,respectively.These results indicate that the L-PBF HEA nanocomposite successfully overcomes the well-known strength-toughness trade-off.The tensile deformation microstructure contained a relatively large number of deformation twins(DTs)at cryogenic temperature,a possible consequence of the decrease in the stacking fault energy with decreasing temperature.On the other hand,cracks were found to propagate along the grain boundaries at room temperature,whereas a transgranular crack was observed at cryogenic temperature in the specimens fractured as a result of the Charpy impact. 展开更多
关键词 Laser powder bed fusion high-entropy alloy matrix nanocomposite Nano-oxide:cryogenic Tensile Impact toughness
原文传递
A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications
14
作者 Yixing Wan Yanhai Cheng +5 位作者 Yongxiong Chen Zhibin Zhang Yanan Liu Haijun Gong Baolong Shen Xiubing Liang 《Engineering》 SCIE EI CAS CSCD 2023年第11期110-120,共11页
Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the micr... Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the microstructures and mechanical properties of the NbMoTaW(HfN)_(x)(x=0,0.3,0.7,and 1.0)RHEAs.The alloys consist of multiple phases of body-centered cubic(BCC),hafnium nitride(HfN),or multicomponent nitride(MN)phases.As the x contents increase,the grain size becomes smaller,and the strength gradually increases.The compressive yield strengths of the NbMoTaWHfN RHEA at ambient temperature,1000,1400,and 1800℃ were found to be 1682,1192,792,and 288 MPa,respectively.The high-temperature strength of this alloy is an inspiring result that exceeds the high temperature and strength of most known alloys,including high-entropy alloys,refractory metals,and superalloys.The HfN phase has a significant effect on strengthening due to its high structural stability and sluggish grain coarsening,even at ultra-high temperatures.Its superior properties endow the NbMoTaWHfN RHEA with potential for a wide range of engineering applications at ultra-high temperatures.This work offers a strategy for the design of high-temperature alloys and proposes an ultra-high-temperature alloy with potential for future engineering applications. 展开更多
关键词 Refractory high-entropy alloy High temperature Mechanical property MICROSTRUCTURE Strengthening mechanism
下载PDF
Uncertainty quantification of predicting stable structures for high-entropy alloys using Bayesian neural networks
15
作者 Yonghui Zhou Bo Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期118-124,I0005,共8页
High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated wi... High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated with density functional theory to search the configuration space of the CoNiRhRu HEA system.The BNN model was developed by considering six independent features of Co-Ni,Co-Rh,CoRu,Ni-Rh,Ni-Ru,and Rh-Ru in different shells and energies of structures as the labels.The root mean squared error of the energy predicted by BNN is 1.37 me V/atom.Moreover,the influence of feature periodicity on the energy of HEA in theoretical calculations is discussed.We found that when the neural network is optimized to a certain extent,only using the accuracy indicator of root mean square error to evaluate model performance is no longer accurate in some scenarios.More importantly,we reveal the importance of uncertainty quantification for neural networks to predict new structures of HEAs with proper confidence based on BNN. 展开更多
关键词 Uncertainty quantification high-entropy alloys Bayesian neural networks Energy prediction Structure screening
下载PDF
On the Superconductivity in High-Entropy Alloy (NbTa)1-X(HfZrTi)X
16
作者 Snehadri B. Ota 《Journal of Modern Physics》 CAS 2023年第4期445-449,共5页
The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X<... The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge. 展开更多
关键词 high-entropy alloys Disordered Metals Strong-Coupled Superconductivity LOCALIZATION Cocktail Effect
下载PDF
Enhancing the mechanical properties of casting eutectic high -entropy alloys via W addition
17
作者 Xu Yang Dezhi Chen +3 位作者 Li Feng Gang Qin Shiping Wu Ruirun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1364-1372,共9页
The effect of W element on the microstructure evolution and mechanical properties of Al_(1.25)CoCrFeNi3 eutectic high-entropy alloy and Al_(1.25)CoCrFeNi_(3-x)W_(x)(x=0,0.05,0.1,0.3,and 0.5;atomic ratio)high-entropy a... The effect of W element on the microstructure evolution and mechanical properties of Al_(1.25)CoCrFeNi3 eutectic high-entropy alloy and Al_(1.25)CoCrFeNi_(3-x)W_(x)(x=0,0.05,0.1,0.3,and 0.5;atomic ratio)high-entropy alloys(HEAs)were explored.Results show that the Al_(1.25)CoCrFeNi_(3-x)W_(x) HEAs are composed of face-centered cubic and body-centered cubic(BCC)phases.As W content increases,the microstructure changes from eutectic to dendritic.The addition of W lowers the nucleation barrier of the BCC phase,decreases the valence electron concentration of the HEAs,and replaces Al in the BCC phase,thus facilitating the nucleation of the BCC phase.Tensile results show that the addition of W greatly improves the mechanical properties,and solid-solution,heterogeneous-interface,and second-phase strengthening are the main strengthening mechanisms.The yield strength,tensile strength,and elongation of the Al_(1.25)CoCrFeNi2.95W0.05 HEA are 601.44 MPa,1132.26 MPa,and 15.94%,respectively,realizing a balance between strength and plasti-city.The fracture mode of the Al_(1.25)CoCrFeNi_(3-x)W_(x) HEAs is ductile–brittle mixed fracture,and the crack propagates and initiates in the BCC phase.The eutectic lamellar structure impedes crack propagation and maintains plasticity. 展开更多
关键词 high-entropy alloy microstructure mechanical property fracture behavior
下载PDF
Microstructures and micromechanical behaviors of high -entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review
18
作者 Yubo Huang Ning Xu +3 位作者 Huaile Lu Yang Ren Shilei Li Yandong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1333-1349,共17页
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten... High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed. 展开更多
关键词 high-entropy alloys MICROSTRUCTURES micromechanical behaviors synchrotron X-ray diffraction neutron diffraction
下载PDF
Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion
19
作者 Young-Kyun Kim Kee-Ahn Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第22期8-22,共15页
High-entropy alloys(HEAs)with interstitial atoms that are produced by additive manufacturing have gained intensive interest in the materials science community because of their suitability for constructing high-strengt... High-entropy alloys(HEAs)with interstitial atoms that are produced by additive manufacturing have gained intensive interest in the materials science community because of their suitability for constructing high-strength net-shape components.Here,a strategy to additionally enhance the strength of selective laser melted carbon-containing HEAs was investigated.The as-built carbon-containing HEAs(C_(x)(Cr_(20)Mn_(20)Fe_(20)Co_(20)Ni_(20))_(100-x)(x=0.5 at.%,1.0 at.%,and 1.5 at.%))contain supersaturated carbon,and the extent of supersaturation increases as the carbon content increases.When subjected to aging treatment at 650°C for 1 h,the microstructure of the three alloys did not change at the grain scale.However,the microstructure at the sub-grain scale changed markedly,and these changes influenced the tensile properties and deformation mechanism.In particular,the tensile strength of aged 1.5C-HEA at 650°C was∼1.2 GPa at room temperature,which is higher than those reported for CrMnFeCoNi HEAs.Furthermore,the main deformation mechanism changed from deformation twinning to dislocation-mediated slip,resulting in much higher strain hardening capacity after the aging treatment.This work led to the development of an alternative promising method that involves tailoring the microstructure,to enhance the mechanical properties of additively manufactured metallic materials that contain interstitial atoms. 展开更多
关键词 Selective laser melting high-entropy alloy Carbon contents Aging Microstructure evolution Tensile property Deformation mechanism
原文传递
Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating 被引量:12
20
作者 Ying Zhang Teng-fei Han +1 位作者 Meng Xiao Yi-fu Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期630-639,共10页
FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, microstructure, hardness, and wear resistance of each coating were studied. The smoothness and d... FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, microstructure, hardness, and wear resistance of each coating were studied. The smoothness and dilution rate of the FeNiCoCrTi0.5 coating generally increased with the increase of specific energy(Es), which is the laser irradiation energy received by a unit area. FeNiCoCrTi0.5 coatings at different parameters had bcc, fcc, and Ti-rich phases as well as equiaxed, dendritic, and columnar structures. When Es increased, the size of each structure increased and the distribution area of the columnar and dendritic structures changed. The prepared FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 had the highest hardness and the best wear resistance, the highest hardness of the coating reached HV 498.37, which is twice the substrate hardness. The average hardness of the FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 was 15.8% higher than the lowest average hardness of the coating with the Es of 108.33 J·mm-2. The worn surface morphologies indicate that the FeNiCoCrTi0.5 coatings exhibited abrasive wear. 展开更多
关键词 high-entropy alloy COATING 45 steel LASER CLADDING microstructure wear resistance
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部