The multilayer gradient CrN/ZrN coatings were synthesized by a dual cathode DC magnetron sputtering.The influence of different species of reaction gases and partial pressures on structure and mechanical properties was...The multilayer gradient CrN/ZrN coatings were synthesized by a dual cathode DC magnetron sputtering.The influence of different species of reaction gases and partial pressures on structure and mechanical properties was investigated using XRD, AES, XPS, and nanoindentation. The results show that N2-NH3 mixture process gas is of benefit to the synthesis of superhard multilayered gradient CrN/ZrN coatings. The presence of the preferred orientations of CrN(111), (200) and ZrN (111), (220) in the structure is a main reason for superhardness of multilayered gradient coatings.展开更多
基金Project(043801011) supported by Applied Basic Key Project of Tianjin Project(50472026) supported by the National Natural Science Foundation of China Project(GJDF01) also supported partly by Joint Project of Tianjin Municipal University and Nankai University and Tianjin University, State Education Ministry
文摘The multilayer gradient CrN/ZrN coatings were synthesized by a dual cathode DC magnetron sputtering.The influence of different species of reaction gases and partial pressures on structure and mechanical properties was investigated using XRD, AES, XPS, and nanoindentation. The results show that N2-NH3 mixture process gas is of benefit to the synthesis of superhard multilayered gradient CrN/ZrN coatings. The presence of the preferred orientations of CrN(111), (200) and ZrN (111), (220) in the structure is a main reason for superhardness of multilayered gradient coatings.