The plane strain problem of a crack in a functionally graded strip with a power form shear modulus is studied. The governing equation in terms of Airy's stress function is solved exactly by means of Fourier transform...The plane strain problem of a crack in a functionally graded strip with a power form shear modulus is studied. The governing equation in terms of Airy's stress function is solved exactly by means of Fourier transform. The mixed boundary problem is then reduced to a system of singular integral equations and is solved numerically to obtain the stress intensity factor at crack-tip. The maximum circumferential stress criterion and the strain energy density criterion are both employed to predict the direction of crack initiation. Numerical examples are given to show the influence of the material gradation models and the crack sizes on the mode-I and mode-II stress intensity factors. The dependence of the critical kink-angle on the crack size is examined and it is found that the crack kink-angle decreases with the increase of the normalized crack length, indicating that a longer crack tends to follow the original crack-line while it is much easier for a shorter crack to deviate from the original crack-line.展开更多
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using th...The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.展开更多
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary ex...In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.展开更多
The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the F...The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the FGPM vary continuously as an exponential function. By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors.展开更多
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the mater...In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.展开更多
Crack propagation path in two-directionally graded composites was investigated by the finite element method.A graded extended finite element method(XFEM)was employed to calculate displacement and stress fields in crac...Crack propagation path in two-directionally graded composites was investigated by the finite element method.A graded extended finite element method(XFEM)was employed to calculate displacement and stress fields in cracked graded structures.And a post-processing subroutine of interaction energy integral was implemented to extract the mixed-mode stress intensity factors(SIFs).The maximum hoop stress(MHS)criterion was adopted to predict crack growth direction based on the assumption of local homogenization of asymptotic crack-tip fields in graded materials.Effects of material nonhomogeneous parameters on crack propagation paths were also discussed in detail.It is shown that the present method can provide relatively accurate predictions of crack paths in two-directionally graded composites.Crack propagates in the decreasing direction of effective Young′s modulus.The shape and steepness of property gradient perpendicular to the crack surface have great influences on crack paths.Through redesigning material property reasonably,crack growth in graded material can be changed to improve mechanical behaviours of cracked structures.展开更多
The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transfor...The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms were used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived.And it is shown that, as crack driving force, they are equivalent for the present crack problem. Investigated are the effects of material nonhomogeneity and (strip's) highness on the dynamic fracture behavior. Numerical results reveal that the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus, and that the dynamic behavior varies little with the adjusting of the strip's highness.展开更多
This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors ...This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △Tc that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △Tc for an Al2O3/Si3N4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △Tc. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △Tc can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading.展开更多
The dynamic behaviors of several moving cracks in a functionally graded piezoelectric (FGP) strip subjected to anti-plane mechanical loading and in-plane elec- trical loading are investigated. For the first time, th...The dynamic behaviors of several moving cracks in a functionally graded piezoelectric (FGP) strip subjected to anti-plane mechanical loading and in-plane elec- trical loading are investigated. For the first time, the distributed dislocation technique is used to construct the integral equations for FGP materials, in which the unknown variables are the dislocation densities. With the dislocation densities, the field intensity factors are determined. Moreover, the effects of the speed of the crack propagation on the field intensity factors are studied. Several examples are solved, and the numerical results for the stress intensity factor and the electric displacement intensity factor are presented graphically finally.展开更多
The dynamic interaction of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated...The dynamic interaction of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated. By using the Fourier transform, the problem can be solved with the help of a pair of triple integral equations in which the unknown variable is jump of displacement across the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter, the circular frequency of the incident waves and the thickness of the strip upon stress, electric displacement and magnetic flux intensity factors of cracks.展开更多
The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This pr...The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.展开更多
The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assu...The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assumed to vary proportionately as definite gradient. By using integral transforms and dual integral equations, the local dynamic stress field was obtained. The results of dynamic stress intensity factor show that increasing shear moduli's gradient of FGM or increasing the shear modulus in direction perpendicular to crack surface can restrain the magnitude of dynamic stress intensity factor.展开更多
The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner's linear plate theory with the consideration of the transverse shear deformation generated by bending. The el...The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner's linear plate theory with the consideration of the transverse shear deformation generated by bending. The elastic modulus and Poisson's ratio of the functionally graded plates are assumed to vary continuously through the coordinate y, according to a linear law and a constant, respectively. The governing equations, i.e., the 6th-order partial differential equations with variable coefficients, are derived in the polar coordinate system based on Reissner's plate theory. Furthermore, the generalized displacements are treated in a separation-of-variable form, and the higher-order crack tip fields of the cracked FGM plate are obtained by the eigen-expansion method. It is found that the analytic solutions degenerate to the corresponding fields of the isotropic homogeneous plate with Reissner's effect when the in-homogeneity parameter approaches zero.展开更多
基金supported by the National Natural Science Foundation of China(Nos.10872150 and 10432030)Financial supports from German Research Foundation(DFG,project No.ZH 15/13-1)
文摘The plane strain problem of a crack in a functionally graded strip with a power form shear modulus is studied. The governing equation in terms of Airy's stress function is solved exactly by means of Fourier transform. The mixed boundary problem is then reduced to a system of singular integral equations and is solved numerically to obtain the stress intensity factor at crack-tip. The maximum circumferential stress criterion and the strain energy density criterion are both employed to predict the direction of crack initiation. Numerical examples are given to show the influence of the material gradation models and the crack sizes on the mode-I and mode-II stress intensity factors. The dependence of the critical kink-angle on the crack size is examined and it is found that the crack kink-angle decreases with the increase of the normalized crack length, indicating that a longer crack tends to follow the original crack-line while it is much easier for a shorter crack to deviate from the original crack-line.
基金Project supported by the National Natural Science Foundation of China (Nos. 10572043, 10572155)the Natural Science Foundation for Excellent Young Investigators of Heilongjiang Province(No.JC04-08)
文摘The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.
基金Project supported by the National Natural Science Foundation of China (Nos.90405016 and 10572044)the Special Research Fund for the Doctoral Program of Higher Education (No.2004021334)
文摘In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars (No. 10325208),the National Natural Science Foundation of China (No.10430230)the China Postdoctral Science Foundation (No.2005037640).
文摘The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the FGPM vary continuously as an exponential function. By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors.
基金The project supported by the National Natural Science Foundation of China(90405016,10572044)the Specialized Research Fund for the Doctoral Program of Higher Education(20040213034)
文摘In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.
基金supported by the Fundamental Research Funds for the Central Universities(No.NS2016003)
文摘Crack propagation path in two-directionally graded composites was investigated by the finite element method.A graded extended finite element method(XFEM)was employed to calculate displacement and stress fields in cracked graded structures.And a post-processing subroutine of interaction energy integral was implemented to extract the mixed-mode stress intensity factors(SIFs).The maximum hoop stress(MHS)criterion was adopted to predict crack growth direction based on the assumption of local homogenization of asymptotic crack-tip fields in graded materials.Effects of material nonhomogeneous parameters on crack propagation paths were also discussed in detail.It is shown that the present method can provide relatively accurate predictions of crack paths in two-directionally graded composites.Crack propagates in the decreasing direction of effective Young′s modulus.The shape and steepness of property gradient perpendicular to the crack surface have great influences on crack paths.Through redesigning material property reasonably,crack growth in graded material can be changed to improve mechanical behaviours of cracked structures.
文摘The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms were used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived.And it is shown that, as crack driving force, they are equivalent for the present crack problem. Investigated are the effects of material nonhomogeneity and (strip's) highness on the dynamic fracture behavior. Numerical results reveal that the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus, and that the dynamic behavior varies little with the adjusting of the strip's highness.
文摘This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △Tc that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △Tc for an Al2O3/Si3N4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △Tc. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △Tc can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading.
文摘The dynamic behaviors of several moving cracks in a functionally graded piezoelectric (FGP) strip subjected to anti-plane mechanical loading and in-plane elec- trical loading are investigated. For the first time, the distributed dislocation technique is used to construct the integral equations for FGP materials, in which the unknown variables are the dislocation densities. With the dislocation densities, the field intensity factors are determined. Moreover, the effects of the speed of the crack propagation on the field intensity factors are studied. Several examples are solved, and the numerical results for the stress intensity factor and the electric displacement intensity factor are presented graphically finally.
基金Project supported by the National Natural Science Foundation of China (Nos.10572043,10572155)the Natural Science Foundation with Excellent Young Investigators of Heilongjiang Province(No.JC04-08)
文摘The dynamic interaction of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated. By using the Fourier transform, the problem can be solved with the help of a pair of triple integral equations in which the unknown variable is jump of displacement across the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter, the circular frequency of the incident waves and the thickness of the strip upon stress, electric displacement and magnetic flux intensity factors of cracks.
基金Project supported by the National Natural Science Foundation of China(Nos.11002041 and11272105)the Key Laboratory Opening Funding of Advanced Composites in Special Environment(No.HIT.KLOF.2009032)the Research Fund for the Doctoral Program of Higher Education ofChina(No.20092302110006)
文摘The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.
文摘The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assumed to vary proportionately as definite gradient. By using integral transforms and dual integral equations, the local dynamic stress field was obtained. The results of dynamic stress intensity factor show that increasing shear moduli's gradient of FGM or increasing the shear modulus in direction perpendicular to crack surface can restrain the magnitude of dynamic stress intensity factor.
基金supported by the National Natural Science Foundation of China(Nos.90305023 and 11172332)
文摘The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner's linear plate theory with the consideration of the transverse shear deformation generated by bending. The elastic modulus and Poisson's ratio of the functionally graded plates are assumed to vary continuously through the coordinate y, according to a linear law and a constant, respectively. The governing equations, i.e., the 6th-order partial differential equations with variable coefficients, are derived in the polar coordinate system based on Reissner's plate theory. Furthermore, the generalized displacements are treated in a separation-of-variable form, and the higher-order crack tip fields of the cracked FGM plate are obtained by the eigen-expansion method. It is found that the analytic solutions degenerate to the corresponding fields of the isotropic homogeneous plate with Reissner's effect when the in-homogeneity parameter approaches zero.