期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal 被引量:10
1
作者 刘官厅 杨丽英 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期280-284,共5页
By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions o... By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal. 展开更多
关键词 quasicrystals infinitely many dislocations semi-infinite crack interaction
下载PDF
THE APPROXIMATE SOLUTION OF PENNY-SHAPED CRACKS PERIODICALLY DISTRIBUTED IN INFINITE ELASTIC BODY
2
作者 周建平 陆寅初 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1992年第1期61-68,共8页
The penny-shaped cracks periodically distributed in infinite elastic body are studied. The prob- lem is approximately simplified to that of a single crack embedded in finite length cylinder and the stress intensity fa... The penny-shaped cracks periodically distributed in infinite elastic body are studied. The prob- lem is approximately simplified to that of a single crack embedded in finite length cylinder and the stress intensity factor is obtained by solving a Fredholm integral equation. Numerical results are given and the effects of crack interaction on the stress intensity factor are discussed. 展开更多
关键词 stress intensity factor dual equation crack interaction factor
下载PDF
ZONAL DISINTEGRATION MECHANISM OF DEEP CRACK-WEAKENED ROCK MASSES UNDER DYNAMIC UNLOADING 被引量:15
3
作者 Xiaoping Zhou Qihu Qian Bohu Zhang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第3期240-250,共11页
Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong inter... Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong interaction among cracks is investigated using stress superposition principle and the Chebyshev polynomials expansion of the pseudo-traction. It is found from numerical results that crack nucleation, growth and coalescence lead to failure of deep crack- weakened rock masses. The stress redistribution around the surrounding rock mass induced by unloading excavation is studied. The effect of the excavation time on nucleation, growth, interaction and coalescence of cracks was analyzed. Moreover, the influence of the excavation time on the size and quantity of fractured zone and non-fractured zone was given. When the excavation time is short, zonal disintegration phenomenon may occur in deep rock masses. It is shown from numerical results that the size and quantity of fractured zone increase with decreasing excavation time, and the size and quantity of fractured zone increase with the increasing value of in-situ geostress. 展开更多
关键词 deep crack-weakened rock masses interaction among cracks stress superposition principle zonal disintegration mechanism dynamic unloading
下载PDF
Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing 被引量:7
4
作者 Haijun Wang Hanzhang Li +3 位作者 Lei Tang Xuhua Ren Qingxiang Meng Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期757-769,共13页
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ... Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF. 展开更多
关键词 Three-dimensional internal laser-engraved crack(3D-ILC) interaction of cracks Ultrasonic fatigue Penny-shaped crack Fracture mechanics High-cycle fatigue
下载PDF
THE CONSTITUTIVE RELATION OF CRACK-WEAKENED ROCK MASSES UNDER AXIAL-DIMENSIONAL UNLOADING 被引量:4
5
作者 Xiaoping Zhou Qihu Qian Yongxing Zhang 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第3期221-231,共11页
An accurate and efficient numerical method for solving the crack-crack interaction problem is presented. The method is mainly by means of the dislocation model, stress superposition principle and Chebyshev polynomial ... An accurate and efficient numerical method for solving the crack-crack interaction problem is presented. The method is mainly by means of the dislocation model, stress superposition principle and Chebyshev polynomial expansion of the pseudo-traction. This method can be applied to compute the stress intensity factors of multiple kinked cracks and multiple rows of periodic cracks as well as the overall strains of rock masses containing multiple kinked cracks under complex loads. Many complex computational examples are given. The dependence of the crack-crack interaction on the crack configuration, the geometrical and physical parameters, and loads pattern, is investigated. By comparison with numerical results under confining pressure unloading, it is shown that the crack-crack interaction under axial-dimensional unloading is weaker than those under confining pressure unloading. Numerical results for single faults and crossed faults show that the single faults are more unstable than the crossed faults. It is found from numerical results for different crack lengths and different crack spacing that the interaction among kinked cracks decreases with an increase in length of the kinked cracks and the crack spacing under axial-dimensional unloading. 展开更多
关键词 interaction among cracks axial-dimensional unloading crack-weakened rock masses the stress-strain relation the Chebyshev polynomial expansion
下载PDF
EFFECTIVE ELASTIC MODULI OF AN INHOMOGENEOUS MEDIUM WITH CRACKS
6
作者 吴林志 杜善义 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1995年第2期153-161,共9页
In the present paper, the effective elastic moduli of an inhomogeneous medium with cracks are derived and obtained by taking into account its microstructural properties which involve the shape, size and distribution o... In the present paper, the effective elastic moduli of an inhomogeneous medium with cracks are derived and obtained by taking into account its microstructural properties which involve the shape, size and distribution of cracks and the interaction between cracks. Numerical results for the periodic microstructure of different dimensions are presented. From the results obtained, it can be found that the distribution of cracks has a significant effect on the effective elastic moduli of the material. 展开更多
关键词 MICROcrack MICROSTRUCTURE interaction BETWEEN crackS EFFECTIVE ELASTIC MODULI
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部