This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements...This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.展开更多
An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solut...An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solution of three-dimensional piezoelasticity and the four harmonics involved are represented by one complex potential.Previous results in potential theory are then utilized to obtain the exact solution that is expressed in terms of elementary functions.Comparison is made between the current results with those published and good agreement is obtained.展开更多
In-plane shear crack sub-critical propagation of rock at high temperature was studied by finite element method and shear-box(i.e.compression-shear) test with newly designed electrically conductive adhesive method.Nume...In-plane shear crack sub-critical propagation of rock at high temperature was studied by finite element method and shear-box(i.e.compression-shear) test with newly designed electrically conductive adhesive method.Numerical and experimental results show that the normalized shear(Mode Ⅱ) stress intensity factors,K ⅡT/KT0 is decreased as the temperature increases because high temperature can improve stress distribution at crack tip and reduce the Mode Ⅱ stress intensity factor.Microscopic features of fractured surface are of little pits and secondary micro-cracks in the vicinity(1.5-4.0 mm) of the crack tip.The chevron-shape secondary cracks gradually merge in the length of about 4-5 mm and disappear along the direction of crack propagation.Stable shear crack propagation time is increased with the increasing temperature while the stable shear crack propagation rate is decreased with the increasing temperature,since high temperature can increase the shear(Mode Ⅱ) fracture toughness and prevent the crack growth.It is necessary to ensure the ligament of specimen long enough to measure the maximum unstable crack propagation rate of rock.展开更多
Shear-box(i.e.compression-shear) test and newly designed electrically conductive adhesive method were used to measure shear crack sub-critical propagation time and rate of sandstone specimen.Different cubic specimens ...Shear-box(i.e.compression-shear) test and newly designed electrically conductive adhesive method were used to measure shear crack sub-critical propagation time and rate of sandstone specimen.Different cubic specimens with and without holes were tested to study the effect of holes on the shear crack sub-critical propagation.Numerical and experimental results show that three independent variables of hole,the interval distance S,the distance between the center of hole and the crack tip L,and hole radius R,have different contribution to the ratio of stress intensity factor of the specimen with holes to that of the specimen without hole,KⅡ/KⅡ0.Increasing S and decreasing L and R will result in the decrease of KⅡ/KⅡ0 and help crack arrest.The weight relation of the independent variables for KⅡ/KⅡ0 is S>L>R.The specimen DH3 with the largest value of S and the smallest values of L and R has the longest sub-critical crack propagation time and the smallest sub-critical crack propagation rate.Adding two suitable holes symmetrically to the original crack plane in rock specimen is considered to be a potential method for crack arrest of rock.展开更多
The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the gover...The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.展开更多
In situ tensile tests in a transmission electronmicroscope(TEM)show that dislocations emitted from a modelⅡcrack tipwill form a inverse piled-up group after equilibrium or a doublepiled-up group when they meet a obst...In situ tensile tests in a transmission electronmicroscope(TEM)show that dislocations emitted from a modelⅡcrack tipwill form a inverse piled-up group after equilibrium or a doublepiled-up group when they meet a obstruction, e.g., grain boundary orsecond phase. A microcrack can initiates in front of the piled-upgroup of dislocations. Micromechanics analysis shows thatdislocations emitted from a modelⅡblunt crack tip can form a inversepiled-up or double piled-up group, depending upon the applied stressintensity factor K_Ⅱa, lattice friction stressτ_f and the distanceof the obstruction from the crack tip L.展开更多
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the ...Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the help of boundary conditions.By solving the above systems of non-homogeneous linear equations,the two real stress singularity exponents can be determined when the double material parameters meet certain conditions.The expression of the stress function and all coefficients are obtained based on the uniqueness theorem of limit.By substituting these parameters into the corresponding mechanics equations,theoretical solutions to the stress intensity factor,the stress field and the displacement field near the crack tip of each material can be obtained when both discriminants of the characteristic equations are less than zero.Stress and displacement near the crack tip show mixed crack characteristics without stress oscillation and crack surface overlapping.As an example,when the two orthotropic materials are the same,the stress singularity exponent,the stress intensity factor,and expressions for the stress and the displacement fields of the orthotropic single materials can be derived.展开更多
In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests ...In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.展开更多
A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic...A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.展开更多
The present study develops the fracture theory for a two-dimensional octagonal quasicrystals. The exact analytic solution of a Mode Ⅱ Griffith crack in the material was obtained by using the Fourier transform and dua...The present study develops the fracture theory for a two-dimensional octagonal quasicrystals. The exact analytic solution of a Mode Ⅱ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, then the displacement and stress fields, stress intensity factor and strain energy release rate were determined, the physical sense of the results relative to phason and the difference between mechanical behaviors of the crack problem in crystal and quasicrystal were figured out. These provide important information for studying the deformation and fracture of the new solid phase.展开更多
It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times ...It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.展开更多
A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and fr...A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip_crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power_hardening index n and the ratio of Young's module notably influence the crack_tip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack_tip field.展开更多
Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution...Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution,the material behaved hydrogen embrittlement in all the cases studied.The threshold K_(ⅡH)/K_(ⅡX) of HIC under mode Ⅱ load- ing was 0.27,which was nearly the same as that K(ⅠH)/K_(ⅠX)=0.29 under mode Ⅰ loading. While the thresholds of-HIC under(Ⅰ+Ⅱ)mixed mode loading were 0.36,0.41 and 0.37 cor- responding to the K_Ⅱ/K_Ⅰ ratio of 0.27,0.4 and O.81.The results show that simple mode Ⅰ or mode Ⅱ loading is more susceptible to hydrogen embrittlement than(Ⅰ+Ⅱ)mixed mode. For explaining the experimental results,the effects of triaxial stress as well as plastic deformation ahead of crack tip has been discussed.展开更多
By using the method of stress functions, the problem of mode-Ⅱ Griffith crack in decagonal quasicrystals was solved. First, the crack problem of two-dimensional quasi-crystals was decomposed into a plane strain state...By using the method of stress functions, the problem of mode-Ⅱ Griffith crack in decagonal quasicrystals was solved. First, the crack problem of two-dimensional quasi-crystals was decomposed into a plane strain state problem superposed on anti-plane state problem and secondly, by introducing stress functions, the 18 basic elasticity equations on coupling phonon-phason field of decagonal quasicrystals were reduced to a single higher- order partial differential equations. The solution of this equation under mixed boundary conditions of mode-Ⅱ Griffith crack was obtained in terms of Fourier transform and dual integral equations methods. All components of stresses and displacements can be expressed by elemental functions and the stress intensity factor and the strain energy release rate were determined.展开更多
The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of ...The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theoryhave been completely. dbandoned and the correct .formulations of matching conditionsat the elastic-plastic boundary have been given. By matching the general solution of the plastic stress field (but not the special solution used to be adopted) will the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary. near the crack line, the plastic .stresses, the length of the plastic zone and theunit normal vector of the elaslic-plastic boundary. which sufficiently precise nearthe crack line region, hare been given.展开更多
The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of t...The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theory.hare been completely. dbandoned and the correct formulations of matching conditionsat the elaslic-plastic boundary. have been given. By, matching the general solution ofthe plastic slress field (bul not the special solution used to be adopted) with the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary, near the crack line, the plastic stresses. the length of the plastic =one and theunit normal vector of the elastic-plastic boundary.which are sufficiently precise near the crack line region ,have been given.展开更多
The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so t...The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.展开更多
A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineeri...A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.展开更多
基金supported by the National Natural Science Foundation of China(No.11802165)the China Postdoctoral Science Foundation(Grant No.2019M650158).
文摘This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.
基金The project supported by the National Natural Science Foundation of China(No.19872060)
文摘An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solution of three-dimensional piezoelasticity and the four harmonics involved are represented by one complex potential.Previous results in potential theory are then utilized to obtain the exact solution that is expressed in terms of elementary functions.Comparison is made between the current results with those published and good agreement is obtained.
基金Project(50374073) supported by the National Natural Science Foundation of ChinaProject(1343-77239) supported by the Graduate Education Innovation Project of Central South University,China
文摘In-plane shear crack sub-critical propagation of rock at high temperature was studied by finite element method and shear-box(i.e.compression-shear) test with newly designed electrically conductive adhesive method.Numerical and experimental results show that the normalized shear(Mode Ⅱ) stress intensity factors,K ⅡT/KT0 is decreased as the temperature increases because high temperature can improve stress distribution at crack tip and reduce the Mode Ⅱ stress intensity factor.Microscopic features of fractured surface are of little pits and secondary micro-cracks in the vicinity(1.5-4.0 mm) of the crack tip.The chevron-shape secondary cracks gradually merge in the length of about 4-5 mm and disappear along the direction of crack propagation.Stable shear crack propagation time is increased with the increasing temperature while the stable shear crack propagation rate is decreased with the increasing temperature,since high temperature can increase the shear(Mode Ⅱ) fracture toughness and prevent the crack growth.It is necessary to ensure the ligament of specimen long enough to measure the maximum unstable crack propagation rate of rock.
基金Project(50374073) supported by the National Natural Science Foundation of ChinaProject(1343-77239) supported by the Graduate Education Innovation Project of Central South University,China
文摘Shear-box(i.e.compression-shear) test and newly designed electrically conductive adhesive method were used to measure shear crack sub-critical propagation time and rate of sandstone specimen.Different cubic specimens with and without holes were tested to study the effect of holes on the shear crack sub-critical propagation.Numerical and experimental results show that three independent variables of hole,the interval distance S,the distance between the center of hole and the crack tip L,and hole radius R,have different contribution to the ratio of stress intensity factor of the specimen with holes to that of the specimen without hole,KⅡ/KⅡ0.Increasing S and decreasing L and R will result in the decrease of KⅡ/KⅡ0 and help crack arrest.The weight relation of the independent variables for KⅡ/KⅡ0 is S>L>R.The specimen DH3 with the largest value of S and the smallest values of L and R has the longest sub-critical crack propagation time and the smallest sub-critical crack propagation rate.Adding two suitable holes symmetrically to the original crack plane in rock specimen is considered to be a potential method for crack arrest of rock.
基金supported by the Natural Science Foundation of Shaanxi Province (No.2007011008)
文摘The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.
基金[This project was financially supported by the special funds for the Major State Basic Research Projects (G19990650), Visiting Scholar Foundation of Key Laboratory of the Ministry of Education PRC and by the NNSF of China.]
文摘In situ tensile tests in a transmission electronmicroscope(TEM)show that dislocations emitted from a modelⅡcrack tipwill form a inverse piled-up group after equilibrium or a doublepiled-up group when they meet a obstruction, e.g., grain boundary orsecond phase. A microcrack can initiates in front of the piled-upgroup of dislocations. Micromechanics analysis shows thatdislocations emitted from a modelⅡblunt crack tip can form a inversepiled-up or double piled-up group, depending upon the applied stressintensity factor K_Ⅱa, lattice friction stressτ_f and the distanceof the obstruction from the crack tip L.
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
基金Project supported by the Major Project of Science and Technology of Ministry of Education of China(No.208022)the Natural Science Foundation of Shanxi Province(No.2007011008)
文摘Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the help of boundary conditions.By solving the above systems of non-homogeneous linear equations,the two real stress singularity exponents can be determined when the double material parameters meet certain conditions.The expression of the stress function and all coefficients are obtained based on the uniqueness theorem of limit.By substituting these parameters into the corresponding mechanics equations,theoretical solutions to the stress intensity factor,the stress field and the displacement field near the crack tip of each material can be obtained when both discriminants of the characteristic equations are less than zero.Stress and displacement near the crack tip show mixed crack characteristics without stress oscillation and crack surface overlapping.As an example,when the two orthotropic materials are the same,the stress singularity exponent,the stress intensity factor,and expressions for the stress and the displacement fields of the orthotropic single materials can be derived.
基金Projects(U19A2098,1210021843)supported by the National Natural Science Foundation of ChinaProject(2021SCU12130)supported by Fundamental Research Funds for the Central Universities,China+1 种基金Project(2021YJ0511)supported by the Sichuan Science and Technology Program,ChinaProjects(DESEYU202205,DESE202005)supported by the Open Fund of Key Laboratory of Deep Earth Science and Engineering,China。
文摘In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.
基金the Natural Science Foundation of Heilongjiang Province(A009).
文摘A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.
文摘The present study develops the fracture theory for a two-dimensional octagonal quasicrystals. The exact analytic solution of a Mode Ⅱ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, then the displacement and stress fields, stress intensity factor and strain energy release rate were determined, the physical sense of the results relative to phason and the difference between mechanical behaviors of the crack problem in crystal and quasicrystal were figured out. These provide important information for studying the deformation and fracture of the new solid phase.
文摘It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.
基金theNaturalScienceFoundationofHeilongjiangProvince China (A0 0 9)
文摘A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip_crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power_hardening index n and the ratio of Young's module notably influence the crack_tip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack_tip field.
文摘Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution,the material behaved hydrogen embrittlement in all the cases studied.The threshold K_(ⅡH)/K_(ⅡX) of HIC under mode Ⅱ load- ing was 0.27,which was nearly the same as that K(ⅠH)/K_(ⅠX)=0.29 under mode Ⅰ loading. While the thresholds of-HIC under(Ⅰ+Ⅱ)mixed mode loading were 0.36,0.41 and 0.37 cor- responding to the K_Ⅱ/K_Ⅰ ratio of 0.27,0.4 and O.81.The results show that simple mode Ⅰ or mode Ⅱ loading is more susceptible to hydrogen embrittlement than(Ⅰ+Ⅱ)mixed mode. For explaining the experimental results,the effects of triaxial stress as well as plastic deformation ahead of crack tip has been discussed.
文摘By using the method of stress functions, the problem of mode-Ⅱ Griffith crack in decagonal quasicrystals was solved. First, the crack problem of two-dimensional quasi-crystals was decomposed into a plane strain state problem superposed on anti-plane state problem and secondly, by introducing stress functions, the 18 basic elasticity equations on coupling phonon-phason field of decagonal quasicrystals were reduced to a single higher- order partial differential equations. The solution of this equation under mixed boundary conditions of mode-Ⅱ Griffith crack was obtained in terms of Fourier transform and dual integral equations methods. All components of stresses and displacements can be expressed by elemental functions and the stress intensity factor and the strain energy release rate were determined.
文摘The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theoryhave been completely. dbandoned and the correct .formulations of matching conditionsat the elastic-plastic boundary have been given. By matching the general solution of the plastic stress field (but not the special solution used to be adopted) will the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary. near the crack line, the plastic .stresses, the length of the plastic zone and theunit normal vector of the elaslic-plastic boundary. which sufficiently precise nearthe crack line region, hare been given.
文摘The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theory.hare been completely. dbandoned and the correct formulations of matching conditionsat the elaslic-plastic boundary. have been given. By, matching the general solution ofthe plastic slress field (bul not the special solution used to be adopted) with the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary, near the crack line, the plastic stresses. the length of the plastic =one and theunit normal vector of the elastic-plastic boundary.which are sufficiently precise near the crack line region ,have been given.
文摘The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.
基金Supported by Heilongjiang Province Foundation under Grant No.LC08C02
文摘A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.