在船舶运输、石油化工等需要广泛使用各类型管道的行业中,管道的结构健康监测(structural health monitoring, SHM)对于工业系统的安全稳定运行意义重大。在基于超声导波的管道裂纹等级识别方面,建立了一个与实际管道基本一致的有限元模...在船舶运输、石油化工等需要广泛使用各类型管道的行业中,管道的结构健康监测(structural health monitoring, SHM)对于工业系统的安全稳定运行意义重大。在基于超声导波的管道裂纹等级识别方面,建立了一个与实际管道基本一致的有限元模型,通过添加噪声的方式合成了更接近实际检测的导波数据。基于包含不同管道裂纹等级的有限元仿真数据库,提出了一种基于多尺度一维卷积神经网络(multi-scale one dimensional convolution neural network, MS-1DCNN)的管道裂纹等级识别模型,该模型以端到端的方法,将原始波形信号直接作为输入,无需专门设计信号降噪及特征提取算法。试验结果表明,该模型相较于传统机器学习方法在噪声环境下对管道裂纹等级的识别具有较高精度,并通过实物管道试验,验证了该模型在管道结构健康监测中的有效性。展开更多
针对Faster R-CNN算法对多目标、小目标检测精度不高的问题,本文提出一种基于Faster R-CNN的多任务增强裂缝图像检测(Multitask Enhanced Dam Crack Image Detection Based on Faster R-CNN,ME-Faster RCNN)方法。同时提出一种基于K-me...针对Faster R-CNN算法对多目标、小目标检测精度不高的问题,本文提出一种基于Faster R-CNN的多任务增强裂缝图像检测(Multitask Enhanced Dam Crack Image Detection Based on Faster R-CNN,ME-Faster RCNN)方法。同时提出一种基于K-means的多源自适应平衡TrAdaBoost的迁移学习方法(multi-source adaptive balance TrAdaBoost based on K-means,K-MABtrA)辅助网络训练,解决样本不足问题。ME-Faster R-CNN将图片输入ResNet-50网络提取特征;然后将所得特征图输入多任务增强RPN模型,同时改善RPN模型的锚盒尺寸和大小以提高检测识别精度,生成候选区域;最后将特征图和候选区域发送到检测处理网络。K-MABtrA方法利用K-means聚类删除与目标源差别较大的图像,再在多元自适应平衡TrAdaBoost迁移学习方法下训练模型。实验结果表明:将ME-Faster R-CNN在K-MABtrA迁移学习的条件下应用于小数据集大坝裂缝图像集的平均IoU为82.52%,平均精度mAP值为80.02%,与相同参数设置下的Faster R-CNN检测算法相比,平均IoU和mAP值分别提高了1.06%和1.56%。展开更多
文摘在船舶运输、石油化工等需要广泛使用各类型管道的行业中,管道的结构健康监测(structural health monitoring, SHM)对于工业系统的安全稳定运行意义重大。在基于超声导波的管道裂纹等级识别方面,建立了一个与实际管道基本一致的有限元模型,通过添加噪声的方式合成了更接近实际检测的导波数据。基于包含不同管道裂纹等级的有限元仿真数据库,提出了一种基于多尺度一维卷积神经网络(multi-scale one dimensional convolution neural network, MS-1DCNN)的管道裂纹等级识别模型,该模型以端到端的方法,将原始波形信号直接作为输入,无需专门设计信号降噪及特征提取算法。试验结果表明,该模型相较于传统机器学习方法在噪声环境下对管道裂纹等级的识别具有较高精度,并通过实物管道试验,验证了该模型在管道结构健康监测中的有效性。
文摘针对Faster R-CNN算法对多目标、小目标检测精度不高的问题,本文提出一种基于Faster R-CNN的多任务增强裂缝图像检测(Multitask Enhanced Dam Crack Image Detection Based on Faster R-CNN,ME-Faster RCNN)方法。同时提出一种基于K-means的多源自适应平衡TrAdaBoost的迁移学习方法(multi-source adaptive balance TrAdaBoost based on K-means,K-MABtrA)辅助网络训练,解决样本不足问题。ME-Faster R-CNN将图片输入ResNet-50网络提取特征;然后将所得特征图输入多任务增强RPN模型,同时改善RPN模型的锚盒尺寸和大小以提高检测识别精度,生成候选区域;最后将特征图和候选区域发送到检测处理网络。K-MABtrA方法利用K-means聚类删除与目标源差别较大的图像,再在多元自适应平衡TrAdaBoost迁移学习方法下训练模型。实验结果表明:将ME-Faster R-CNN在K-MABtrA迁移学习的条件下应用于小数据集大坝裂缝图像集的平均IoU为82.52%,平均精度mAP值为80.02%,与相同参数设置下的Faster R-CNN检测算法相比,平均IoU和mAP值分别提高了1.06%和1.56%。