We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r...We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.展开更多
We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repet...We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.展开更多
Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we ...Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we established a newborn mouse model of hypoxic-ischemic brain injury using a modified Rice-Vannucci method and performed intraperitoneal injection of CGA.We found that CGA intervention effectively reduced the volume of cerebral infarct,alleviated cerebral edema,restored brain tissue structure after injury,and promoted axon growth in injured brain tissue.Moreover,CGA pretreatment alleviated oxygen-glucose deprivation damage of primary neurons and promoted neuron survival.In addition,changes in ferroptosis-related proteins caused by hypoxic-ischemic brain injury were partially reversed by CGA.Furthermore,CGA intervention upregulated the expression of the key ferroptosis factor glutathione peroxidase 4 and its upstream glutamate/cystine antiporter related factors SLC7A11 and SLC3A2.In summary,our findings reveal that CGA alleviates hypoxic-ischemic brain injury in neonatal mice by reducing ferroptosis,providing new ideas for the treatment of neonatal hypoxic-ischemic brain injury.展开更多
Long noncoding RNAs(lnc RNAs)participate in many pathophysiological processes after traumatic brain injury by mediating neuroinflammation and apoptosis.Homeobox A11 antisense RNA(HOXA11-AS)is a member of the lnc RNA f...Long noncoding RNAs(lnc RNAs)participate in many pathophysiological processes after traumatic brain injury by mediating neuroinflammation and apoptosis.Homeobox A11 antisense RNA(HOXA11-AS)is a member of the lnc RNA family that has been reported to participate in many inflammatory reactions;however,its role in traumatic brain injury remains unclear.In this study,we established rat models of traumatic brain injury using a weight-drop hitting device and injected LV-HOXA11-AS into the right lateral ventricle 2 weeks before modeling.The results revealed that overexpression of HOXA11-AS aggravated neurological deficits in traumatic brain injury rats,increased brain edema and apoptosis,promoted the secretion of proinflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factorα,and promoted the activation of astrocytes and microglia.Microglia were treated with 100 ng/m L lipopolysaccharide for 24 hours to establish in vitro cell models,and then transfected with pc DNA-HOXA11-AS,mi R-124-3 p mimic,or sh-MDK.The results revealed that HOXA11-AS inhibited mi R-124-3 p expression and boosted MDK expression and TLR4-nuclear factor-κB pathway activation.Furthermore,lipopolysaccharide enhanced potent microglia-induced inflammatory responses in astrocytes.Forced overexpression of mi R-124-3 p or downregulating MDK repressed microglial activation and the inflammatory response of astrocytes.However,the mi R-124-3 p-mediated anti-inflammatory effects were reversed by HOXA11-AS.These findings suggest that HOXA11-AS can aggravate neuroinflammation after traumatic brain injury by modulating the mi R-124-3 p-MDK axis.This study was approved by the Animal Protection and Use Committee of Southwest Medical University(approval No.SMU-2019-042)on February 4,2019.展开更多
Previous studies have reported a neuroprotective effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) against traumatic brain injury. In accordance with the Marmarou method, rat models of diffuse axonal in...Previous studies have reported a neuroprotective effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) against traumatic brain injury. In accordance with the Marmarou method, rat models of diffuse axonal injury were established. 8-OH-DPAT was intraperitoneally injected into model rats. 8-OH-DPAT treated rats maintained at constant temperature served as normal temperature controls TUNEL results revealed that neural cell swelling, brain tissue necrosis and cell apoptosis occurred around the injured tissue. Moreover, the number of Bax-, Bcl-2- and caspase-3-positive cells increased at 6 hours after diffuse axonal injury, and peaked at 24 hours. However, brain injury was attenuated, the number of apoptotic cells reduced, Bax and caspase-3 expression decreased, and Bcl-2 expression increased at 6, 12, 24, 72 and 168 hours after diffuse axonal injury in normal temperature control and in 8-OH-DPAT-intervention rats. The difference was most significant at 24 hours. All indices in 8-OH-DPAT-intervention rats were better than those in the constant temperature group. These results suggest that 8-OH-DPAT inhibits Bax and caspase-3 expression, increases Bcl-2 expression, and reduces neural cell apoptosis, resulting in neuroprotection against diffuse axonal injury. This effect is associated with a decrease in brain temperature.展开更多
A preliminary study has found that the 5-lipoxygenase inhibitor, caffeic acid, has a marked protective effect on acute brain injury induced by intracerebroventricular microinjection of aluminum. In this experiment, ch...A preliminary study has found that the 5-lipoxygenase inhibitor, caffeic acid, has a marked protective effect on acute brain injury induced by intracerebroventricular microinjection of aluminum. In this experiment, chronic brain injury and neuronal degeneration model was established in rats by chronic oral administration of aluminum, and then intervened using caffeic acid. Results showed that caffeic acid can downregulate chronic aluminum overload-induced 5-1ipoxygenase mRNA and protein expression, and repair the aluminum overload-induced hippocampal neuronal damage and spatial orientation impairment. It is suggested that direct intervention of 5-lipoxygenase expression has a neuroprotective role in the degeneration induced by chronic aluminum overload brain injury model.展开更多
This study demonstrated that damage to the cerebral microvasculature, the formation of microthrombi and swelling of vascular endothelial cells occur early and peak 12 hours after injury in a rat model of diffuse axona...This study demonstrated that damage to the cerebral microvasculature, the formation of microthrombi and swelling of vascular endothelial cells occur early and peak 12 hours after injury in a rat model of diffuse axonal injury. Moreover, these pathological changes were most evident in the cerebral cortex. Cerebral microcirculatory dysfunction peaked later and had a shorter duration than axonal injury. In addition, the radioactive imaging agent, 99Tcm-4, 9-diaza-2, 3, 10, 10- tetramethyldodecan-2, 11 -dione dioxime, was used to visualize the dynamic changes that occur in tissue with cerebral hypoxia. The results demonstrated that cerebral hypoxia occurs at an early stage in diffuse axonal injury. Cerebral hypoxia was evident 12 hours after injury and declined slightly 24 hours after injury, but was significantly higher than in the control group. The pathological changes that underpin microcirculatory dysfunction did not occur at the same time as axonal injury, but did occur simultaneously with neuronal injury. Cerebral hypoxia plays a key role in promoting the secondary brain injury that occurs after diffuse axonal injury.展开更多
Objective: To investigate the relation between necrosis and apoptosis in the hippocampus of exogenous bFGF on this process. Methods: With Marmarous method we produced a severe diffuse brain injury and studied the chan...Objective: To investigate the relation between necrosis and apoptosis in the hippocampus of exogenous bFGF on this process. Methods: With Marmarous method we produced a severe diffuse brain injury and studied the changes in the hippocampus by adapting a modified TdT mediated dUTP biotin nick end labeling (TUNEL) method. At the same time we observed the effect of exogenous bFGF on neuronal necrosis and apoptosis. Results: We found that together with cell necrosis there was an increase in the number of apoptotic neurons in the hippocampus CA2 3 sectors as early as 4 h after injury, with numbers reaching a maximum at 7 d. Exogenous bFGF resulted in a definite reduction in the amount of necrosis and apoptosis. Conclusions: Neuronal necrosis and apoptosis occur in combination after brain injury and that one of the causes may be the insufficience expression of the bFGF gene in the hippocampus after severe injury. Exogenous bFGF and similar substance may prove clinically useful after brain injury by reducing cell necrosis and apoptosis.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82271327(to ZW),82072535(to ZW),81873768(to ZW),and 82001253(to TL).
文摘We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBSS00047(to PL)the National Natural Science Foundation of China,Nos.82072166(to PL),82071394(to XG)+4 种基金Science and Technology Planning Project of Tianjin,No.20YFZCSY00030(to PL)Science and Technology Project of Tianjin Municipal Health Commission,No.TJWJ2021QN005(to XG)Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-006ATianjin Municipal Education Commission Scientific Research Program Project,No.2020KJ164(to JZ)China Postdoctoral Science Foundation,No.2022M712392(to ZY).
文摘We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.81971425the Natural Science Foundation of Zhejiang Province,No.LY20H040002(both to XQF).
文摘Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we established a newborn mouse model of hypoxic-ischemic brain injury using a modified Rice-Vannucci method and performed intraperitoneal injection of CGA.We found that CGA intervention effectively reduced the volume of cerebral infarct,alleviated cerebral edema,restored brain tissue structure after injury,and promoted axon growth in injured brain tissue.Moreover,CGA pretreatment alleviated oxygen-glucose deprivation damage of primary neurons and promoted neuron survival.In addition,changes in ferroptosis-related proteins caused by hypoxic-ischemic brain injury were partially reversed by CGA.Furthermore,CGA intervention upregulated the expression of the key ferroptosis factor glutathione peroxidase 4 and its upstream glutamate/cystine antiporter related factors SLC7A11 and SLC3A2.In summary,our findings reveal that CGA alleviates hypoxic-ischemic brain injury in neonatal mice by reducing ferroptosis,providing new ideas for the treatment of neonatal hypoxic-ischemic brain injury.
基金supported by the Science and Technology Project of Sichuan Province of China,No.2020YJ0188the Science and Technology Foundation of Luzhou of China,No.2017LZXNYD-J10(both to XLL)。
文摘Long noncoding RNAs(lnc RNAs)participate in many pathophysiological processes after traumatic brain injury by mediating neuroinflammation and apoptosis.Homeobox A11 antisense RNA(HOXA11-AS)is a member of the lnc RNA family that has been reported to participate in many inflammatory reactions;however,its role in traumatic brain injury remains unclear.In this study,we established rat models of traumatic brain injury using a weight-drop hitting device and injected LV-HOXA11-AS into the right lateral ventricle 2 weeks before modeling.The results revealed that overexpression of HOXA11-AS aggravated neurological deficits in traumatic brain injury rats,increased brain edema and apoptosis,promoted the secretion of proinflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factorα,and promoted the activation of astrocytes and microglia.Microglia were treated with 100 ng/m L lipopolysaccharide for 24 hours to establish in vitro cell models,and then transfected with pc DNA-HOXA11-AS,mi R-124-3 p mimic,or sh-MDK.The results revealed that HOXA11-AS inhibited mi R-124-3 p expression and boosted MDK expression and TLR4-nuclear factor-κB pathway activation.Furthermore,lipopolysaccharide enhanced potent microglia-induced inflammatory responses in astrocytes.Forced overexpression of mi R-124-3 p or downregulating MDK repressed microglial activation and the inflammatory response of astrocytes.However,the mi R-124-3 p-mediated anti-inflammatory effects were reversed by HOXA11-AS.These findings suggest that HOXA11-AS can aggravate neuroinflammation after traumatic brain injury by modulating the mi R-124-3 p-MDK axis.This study was approved by the Animal Protection and Use Committee of Southwest Medical University(approval No.SMU-2019-042)on February 4,2019.
基金funded by the Natural Science Foundation of Technology Department of Liaoning Province, No.20032047
文摘Previous studies have reported a neuroprotective effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) against traumatic brain injury. In accordance with the Marmarou method, rat models of diffuse axonal injury were established. 8-OH-DPAT was intraperitoneally injected into model rats. 8-OH-DPAT treated rats maintained at constant temperature served as normal temperature controls TUNEL results revealed that neural cell swelling, brain tissue necrosis and cell apoptosis occurred around the injured tissue. Moreover, the number of Bax-, Bcl-2- and caspase-3-positive cells increased at 6 hours after diffuse axonal injury, and peaked at 24 hours. However, brain injury was attenuated, the number of apoptotic cells reduced, Bax and caspase-3 expression decreased, and Bcl-2 expression increased at 6, 12, 24, 72 and 168 hours after diffuse axonal injury in normal temperature control and in 8-OH-DPAT-intervention rats. The difference was most significant at 24 hours. All indices in 8-OH-DPAT-intervention rats were better than those in the constant temperature group. These results suggest that 8-OH-DPAT inhibits Bax and caspase-3 expression, increases Bcl-2 expression, and reduces neural cell apoptosis, resulting in neuroprotection against diffuse axonal injury. This effect is associated with a decrease in brain temperature.
基金the National Natural Science Foundation of China, No. 30672211
文摘A preliminary study has found that the 5-lipoxygenase inhibitor, caffeic acid, has a marked protective effect on acute brain injury induced by intracerebroventricular microinjection of aluminum. In this experiment, chronic brain injury and neuronal degeneration model was established in rats by chronic oral administration of aluminum, and then intervened using caffeic acid. Results showed that caffeic acid can downregulate chronic aluminum overload-induced 5-1ipoxygenase mRNA and protein expression, and repair the aluminum overload-induced hippocampal neuronal damage and spatial orientation impairment. It is suggested that direct intervention of 5-lipoxygenase expression has a neuroprotective role in the degeneration induced by chronic aluminum overload brain injury model.
基金the National Natural Science Foundationof China, No. 30471774the Program for New Century Excellent Talents in University, Ministry of Education,China, No. NCET-05-0831
文摘This study demonstrated that damage to the cerebral microvasculature, the formation of microthrombi and swelling of vascular endothelial cells occur early and peak 12 hours after injury in a rat model of diffuse axonal injury. Moreover, these pathological changes were most evident in the cerebral cortex. Cerebral microcirculatory dysfunction peaked later and had a shorter duration than axonal injury. In addition, the radioactive imaging agent, 99Tcm-4, 9-diaza-2, 3, 10, 10- tetramethyldodecan-2, 11 -dione dioxime, was used to visualize the dynamic changes that occur in tissue with cerebral hypoxia. The results demonstrated that cerebral hypoxia occurs at an early stage in diffuse axonal injury. Cerebral hypoxia was evident 12 hours after injury and declined slightly 24 hours after injury, but was significantly higher than in the control group. The pathological changes that underpin microcirculatory dysfunction did not occur at the same time as axonal injury, but did occur simultaneously with neuronal injury. Cerebral hypoxia plays a key role in promoting the secondary brain injury that occurs after diffuse axonal injury.
文摘Objective: To investigate the relation between necrosis and apoptosis in the hippocampus of exogenous bFGF on this process. Methods: With Marmarous method we produced a severe diffuse brain injury and studied the changes in the hippocampus by adapting a modified TdT mediated dUTP biotin nick end labeling (TUNEL) method. At the same time we observed the effect of exogenous bFGF on neuronal necrosis and apoptosis. Results: We found that together with cell necrosis there was an increase in the number of apoptotic neurons in the hippocampus CA2 3 sectors as early as 4 h after injury, with numbers reaching a maximum at 7 d. Exogenous bFGF resulted in a definite reduction in the amount of necrosis and apoptosis. Conclusions: Neuronal necrosis and apoptosis occur in combination after brain injury and that one of the causes may be the insufficience expression of the bFGF gene in the hippocampus after severe injury. Exogenous bFGF and similar substance may prove clinically useful after brain injury by reducing cell necrosis and apoptosis.