期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma
1
作者 WEN Yi WANG Junxiang XU Hongbing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期65-73,共9页
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ... Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation. 展开更多
关键词 anisotropic magnetized plasma body-of-revolution(BOR) crank-nicolson Douglas-Gunn(CNDG) finite-difference time-domain(FDTD) perfectly matched layer(PML) rotationally symmetric multi-scale problems
下载PDF
Crank-Nicolson Quasi-Compact Scheme for the Nonlinear Two-Sided Spatial Fractional Advection-Diffusion Equations
2
作者 Dechao Gao Zeshan Qiu +1 位作者 Lizan Wang Jianxin Li 《Journal of Applied Mathematics and Physics》 2024年第4期1089-1100,共12页
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper... The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective. 展开更多
关键词 crank-nicolson Quasi-Compact scheme Fractional Advection-Diffusion Equations NONLINEAR Stability and Convergence
下载PDF
Secret Sharing Schemes Based on the Dual Code of the Code of a Symmetric (v, k, λ)-Design and Minimal Access Sets
3
作者 Selda Calkavur 《Computer Technology and Application》 2015年第2期95-100,共6页
Secret sharing has been a subject of study for over 30 years. The coding theory has been an important role in the constructing of the secret sharing schemes. It is known that every linear code can be used to construct... Secret sharing has been a subject of study for over 30 years. The coding theory has been an important role in the constructing of the secret sharing schemes. It is known that every linear code can be used to construct the secret sharing schemes. Since the code of a symmetric (V, k, λ)-design is a linear code, this study is about the secret sharing schemes based on C of Fp-code C of asymmetric (v, k, λ)-design. 展开更多
关键词 Linear code the code of a symmetric design secret sharing scheme minimal access set.
下载PDF
A Note on Crank-Nicolson Scheme for Burgers’ Equation 被引量:5
4
作者 Kanti Pandey Lajja Verma 《Applied Mathematics》 2011年第7期883-889,共7页
In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equ... In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analyzed for a third test problem, nu-merical solutions as well as exact solutions for different values of viscosity are calculated and we find that the numerical solutions are very close to exact solution. 展开更多
关键词 Hopf-Cole Transformation Burgers’ Equation crank-nicolson scheme Nonlinear Partial Differential EQUATIONS
下载PDF
CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
5
作者 冯新龙 何银年 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期124-138,共15页
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the... In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme. 展开更多
关键词 nonlinear parabolic problem crank-nicolson scheme Newton method finiteelement method optimal error estimate
下载PDF
Random Crank-Nicolson Scheme for Random Heat Equation in Mean Square Sense 被引量:1
6
作者 M. T. Yassen M. A. Sohaly Islam Elbaz 《American Journal of Computational Mathematics》 2016年第2期66-73,共8页
The goal of computational science is to develop models that predict phenomena observed in nature. However, these models are often based on parameters that are uncertain. In recent decades, main numerical methods for s... The goal of computational science is to develop models that predict phenomena observed in nature. However, these models are often based on parameters that are uncertain. In recent decades, main numerical methods for solving SPDEs have been used such as, finite difference and finite element schemes [1]-[5]. Also, some practical techniques like the method of lines for boundary value problems have been applied to the linear stochastic partial differential equations, and the outcomes of these approaches have been experimented numerically [7]. In [8]-[10], the author discussed mean square convergent finite difference method for solving some random partial differential equations. Random numerical techniques for both ordinary and partial random differential equations are treated in [4] [10]. As regards applications using explicit analytic solutions or numerical methods, a few results may be found in [5] [6] [11]. This article focuses on solving random heat equation by using Crank-Nicol- son technique under mean square sense and it is organized as follows. In Section 2, the mean square calculus preliminaries that will be required throughout the paper are presented. In Section 3, the Crank-Nicolson scheme for solving the random heat equation is presented. In Section 4, some case studies are showed. Short conclusions are cleared in the end section. 展开更多
关键词 Random Partial Differential Equations (RPDEs) Mean Square Sense (m.s) Second Order Random Variable (2r.v.'s) Random crank-nicolson scheme CONVERGENCE CONSISTENCY Stability
下载PDF
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
7
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation crank-nicolson scheme
下载PDF
有限元Crank-Nicolson格式高阶求解非稳态扩散方程 被引量:1
8
作者 王晓莹 刘雪 江山 《扬州大学学报(自然科学版)》 CAS 北大核心 2022年第5期17-23,30,共8页
基于空间尺度的有限元法,结合时间尺度的有限差分格式求解一维非稳态扩散方程的初边值问题.建立变分形式和有限维逼近空间,给出有限元结合Crank-Nicolson格式的理论框架和计算步骤,并构造全离散θ-型隐格式,再分别利用线性有限元和二次... 基于空间尺度的有限元法,结合时间尺度的有限差分格式求解一维非稳态扩散方程的初边值问题.建立变分形式和有限维逼近空间,给出有限元结合Crank-Nicolson格式的理论框架和计算步骤,并构造全离散θ-型隐格式,再分别利用线性有限元和二次有限元对非稳态对流扩散反应方程进行数值模拟.结果表明,在空间方向的一致剖分下,时间层离散分别结合线性有限元和二次有限元计算均可得到一致收敛结果,且二次有限元在Crank-Nicolson格式离散下的精度更高,其误差范数的收敛阶可达三阶,应用优势更为显著. 展开更多
关键词 非稳态问题 对流扩散反应方程 有限元法 crank-nicolson对称格式 高次基函数
下载PDF
价k_i(i≠0)均为2的交换结合Scheme
9
作者 徐邦腾 《湖北大学学报(自然科学版)》 CAS 1995年第1期33-38,共6页
价是交换结合Scheme的重要数量特征,有较强的组合性质,利用价来讨论某些交换结合Scheme的构造与性质,是一个常用的方法.设=(X,{Ri}i=0,1,...,d)是一个类d的交换结合Scheme.k0,k1,.... 价是交换结合Scheme的重要数量特征,有较强的组合性质,利用价来讨论某些交换结合Scheme的构造与性质,是一个常用的方法.设=(X,{Ri}i=0,1,...,d)是一个类d的交换结合Scheme.k0,k1,...,kd是的价.本文证明了,若k1=k2=...=kd=2,则 是对称结合Scheme. 展开更多
关键词 交换结合scheme 邻接矩阵 结合scheme
下载PDF
NON-SYMMETRIC ASSOCIATION SCHEMES OF SYMMETRIC MATRICES 被引量:2
10
作者 霍元极 万哲先 《Chinese Science Bulletin》 SCIE EI CAS 1991年第18期1501-1505,共5页
constant whenever (x, y)∈Rk. This constant is denoted by p<sub>ij</sub><sup>k</sup>. Then we call X=(X,{Ri}<sub>0≤i≤d</sub>) and association scheme of class d on X. The non-neg... constant whenever (x, y)∈Rk. This constant is denoted by p<sub>ij</sub><sup>k</sup>. Then we call X=(X,{Ri}<sub>0≤i≤d</sub>) and association scheme of class d on X. The non-negative integers p<sub>ij</sub><sup>k</sup> are called the intersection numbers of X. 展开更多
关键词 symmetric MATRICES ASSOCIATION scheme INTERSECTION number.
原文传递
Symmetric Semi-perfect Obstruction Theory Revisited
11
作者 Yun Feng JIANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第2期209-239,共31页
In this paper we survey some results on the symmetric semi-perfect obstruction theory on a Deligne-Mumford stack X constructed by Chang-Li,and Behrend’s theorem equating the weighted Euler characteristic of X and the... In this paper we survey some results on the symmetric semi-perfect obstruction theory on a Deligne-Mumford stack X constructed by Chang-Li,and Behrend’s theorem equating the weighted Euler characteristic of X and the virtual count of X by symmetric semi-perfect obstruction theories.As an application,we prove that Joyce’s d-critical scheme admits a symmetric semi-perfect obstruction theory,which can be applied to the virtual Euler characteristics by Jiang-Thomas. 展开更多
关键词 symmetric semi-perfect obstruction theory the Behrend function algebraic d-critical scheme virtual signed Euler characteristics
原文传递
Association Schemes of Symmetric Matrices Over Finite Fields of Characteristic Two
12
作者 王仰贤 马建敏 《Chinese Science Bulletin》 SCIE EI CAS 1994年第22期1859-1863,共5页
Association schemes have close connections with coding, design and finite group theory, etc. In 1965, Wan Zhe-xian first discussed the association schemes based on the n×n Hermitian matrices over finite fields, a... Association schemes have close connections with coding, design and finite group theory, etc. In 1965, Wan Zhe-xian first discussed the association schemes based on the n×n Hermitian matrices over finite fields, and calculated their parameters when n=2. Later,Wang Yang-xian gave a recurrence calculation formula of 展开更多
关键词 FINITE FIELDS symmetric MATRICES ASSOCIATION schemes.
原文传递
A Symmetric Characteristic Finite Volume Element Scheme for Nonlinear Convection-Diffusion Problems
13
作者 Min Yang Yi-rang Yuan 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第1期41-54,共14页
In this paper, we implement alternating direction strategy and construct a symmetric FVE scheme for nonlinear convection-diffusion problems. Comparing to general FVE methods, our method has two advantages. First, the ... In this paper, we implement alternating direction strategy and construct a symmetric FVE scheme for nonlinear convection-diffusion problems. Comparing to general FVE methods, our method has two advantages. First, the coefficient matrices of the discrete schemes will be symmetric even for nonlinear problems. Second, since the solution of the algebraic equations at each time step can be inverted into the solution of several one-dimensional problems, the amount of computation work is smaller. We prove the optimal H1-norm error estimates of order O(△t2 + h) and present some numerical examples at the end of the paper. 展开更多
关键词 Finite volume element symmetric scheme NONLINEAR alternating direction error estimates
原文传递
Symplectic schemes and symmetric schemes for nonlinear Schr¨odinger equation in the case of dark solitons motion
14
作者 Yiming Yao Miao Xu +1 位作者 Beibei Zhu Quandong Feng 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第6期150-167,共18页
In this paper,symplectic schemes and symmetric schemes are presented to simulate Nonlinear Schrodinger Equation(NLSE)in case of dark soliton motion.Firstly,by Ablowitz–Ladik model(A–L model),the NLSE is discretized... In this paper,symplectic schemes and symmetric schemes are presented to simulate Nonlinear Schrodinger Equation(NLSE)in case of dark soliton motion.Firstly,by Ablowitz–Ladik model(A–L model),the NLSE is discretized into a non-canonical Hamiltonian system.Then,different kinds of coordinate transformations can be used to standardize the non-canonical Hamiltonian system.Therefore,the symplectic schemes and symmetric schemes can be employed to simulate the solitons motion and test the preservation of the invariants of the A–L model and the conserved quantities approximations of the original NLSE.The numerical experiments show that symplectic schemes and symmetric schemes have similar simulation effect,and own significant superiority over non-symplectic and non-symmetric schemes in long-term tracking the motion of solitons,preserving the invariants and the approximations of conserved quantities.Moreover,it is obvious that coordinate transformations with more symmetry have a better simulation effect. 展开更多
关键词 Symplectic schemes symmetric schemes nonlinear Schr¨odinger equation dark solitons motion Ablowitz–Ladik model
原文传递
Asymptotic-Preserving Discrete Schemes for Non-Equilibrium Radiation Diffusion Problem in Spherical and Cylindrical Symmetrical Geometries
15
作者 Xia Cui Zhi-Jun Shen Guang-Wei Yuan 《Communications in Computational Physics》 SCIE 2018年第1期198-229,共32页
We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s f... We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems. 展开更多
关键词 Spherical symmetrical geometry cylindrical symmetrical geometry non-equilibrium radiation diffusion problem fully discrete schemes asymptotic-preserving second order accuracy
原文传递
Symmetric Energy-Conserved Splitting FDTD Scheme for the Maxwell’s Equations
16
作者 Wenbin Chen Xingjie Li Dong Liang 《Communications in Computational Physics》 SCIE 2009年第9期804-825,共22页
In this paper,a new symmetric energy-conserved splitting FDTD scheme(symmetric EC-S-FDTD)for Maxwell’s equations is proposed.The new algorithm inherits the same properties of our previous EC-S-FDTDI and EC-S-FDTDII a... In this paper,a new symmetric energy-conserved splitting FDTD scheme(symmetric EC-S-FDTD)for Maxwell’s equations is proposed.The new algorithm inherits the same properties of our previous EC-S-FDTDI and EC-S-FDTDII algorithms:energy-conservation,unconditional stability and computational efficiency.It keeps the same computational complexity as the EC-S-FDTDI scheme and is of second-order accuracy in both time and space as the EC-S-FDTDII scheme.The convergence and error estimate of the symmetric EC-S-FDTD scheme are proved rigorously by the energy method and are confirmed by numerical experiments. 展开更多
关键词 Maxwell’s equation ADI method FDTD energy-conserved second-order accuracy symmetric scheme
原文传递
NON-SYMMETRIC ASSOCIATION SCHEMES OF SYMMETRIC MATRICES
17
作者 霍元极 万哲先 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1993年第3期236-255,共20页
Let X_n be the set of n×n symmetric matrices over a finite field F_q,where q is a power of an odd prime.For S_1,S_2 ∈ X_n,we define (S_1,S_2)∈ R_0 iff S_1=S_2;(S_1,S_2)∈R_(r,ε)iff S_1-S_2 is congruent to wher... Let X_n be the set of n×n symmetric matrices over a finite field F_q,where q is a power of an odd prime.For S_1,S_2 ∈ X_n,we define (S_1,S_2)∈ R_0 iff S_1=S_2;(S_1,S_2)∈R_(r,ε)iff S_1-S_2 is congruent to where?=1 or z,z being afixed non-square element of F_q.Then X_n=(X_n,{R_0,R_(r,ε)|1≤r≤n,?=1 or z}) is a non-symmetric association scheme of class 2n on X_n.The parameters of X_n have been computed.And we also prove that X_n is commutative. 展开更多
关键词 NON-symmetric ASSOCIATION schemeS OF symmetric MATRICES
原文传递
VSC-HVDC三相不平衡控制策略 被引量:33
18
作者 袁旭峰 高璐 +1 位作者 文劲宇 程时杰 《电力自动化设备》 EI CSCD 北大核心 2010年第9期1-5,共5页
分析了电网三相不平衡时电压源换流器高压直流输电(VSC-HVDC)系统的谐波传递特性,设计了一种基于瞬时对称分量法的序分量检测技术,适用于VSC-HVDC系统的正、负序双回路的双闭环控制策略。该控制策略利用瞬时对称分量变换获取电压和电流... 分析了电网三相不平衡时电压源换流器高压直流输电(VSC-HVDC)系统的谐波传递特性,设计了一种基于瞬时对称分量法的序分量检测技术,适用于VSC-HVDC系统的正、负序双回路的双闭环控制策略。该控制策略利用瞬时对称分量变换获取电压和电流的无延迟正、负序分量,不仅在时域范围内对传统对称分量法进行了扩展,而且也解决了正、负序分解时所带来的延迟问题。另外,提出在三相不平衡电力系统的控制中增加一个不平衡指令补偿模块,改善VSC-HVDC系统在电网三相不平衡时的运行特性。最后,在仿真软件PSCAD/EMTDC的环境下建立了一个VSC-HVDC系统及相关控制策略,验证了所设计控制策略的正确性。 展开更多
关键词 VSC-HVDC系统 三相不平衡 谐波传递特性 瞬时对称分量法 双闭环控制策略
下载PDF
一种支持共享的高可用数据库加密机制 被引量:10
19
作者 张立秋 常会友 刘翔 《计算机工程与应用》 CSCD 北大核心 2005年第20期189-191,共3页
加密数据库可以保证数据在数据库存储期间的机密性,但往往难以很好地支持多用户的共享访问,难以保证良好的可用性及易用性。文章在基于字段加密的前提下,提出了一种由数据密钥对敏感数据进行加密保护,由数据库用户公钥对数据密钥进行加... 加密数据库可以保证数据在数据库存储期间的机密性,但往往难以很好地支持多用户的共享访问,难以保证良好的可用性及易用性。文章在基于字段加密的前提下,提出了一种由数据密钥对敏感数据进行加密保护,由数据库用户公钥对数据密钥进行加密保护,最终由数据库用户口令对用户私钥进行加密保护的完整数据库加密机制。据此理论建立的加密数据库模型既可以保证数据的安全性,也支持对加密信息的共享访问,在可用性、易用性方面也比以往系统有明显增强。 展开更多
关键词 加密数据库 加密机制 对称加密算法 非对称加密算法
下载PDF
对称不稳定对梅雨锋暴雨影响的数值模拟 被引量:3
20
作者 费建芳 伍荣生 +2 位作者 黄小刚 王元 程小平 《水科学进展》 EI CAS CSCD 北大核心 2010年第3期349-356,共8页
在Kuo-Anthes垂直对流参数化方案和Nordeng倾斜对流参数化方案基础上,提出了垂直-倾斜对流一体化参数化方案,在引入MM5模式后,对1999年6月发生在长江流域的一次大尺度带状强降水过程进行了数值模拟及敏感性试验。结果表明:在模式中引入... 在Kuo-Anthes垂直对流参数化方案和Nordeng倾斜对流参数化方案基础上,提出了垂直-倾斜对流一体化参数化方案,在引入MM5模式后,对1999年6月发生在长江流域的一次大尺度带状强降水过程进行了数值模拟及敏感性试验。结果表明:在模式中引入倾斜对流参数化方案,可有效改进模式模拟的降水强度和位置,加快形成锋面附近的垂直环流并使之得到增强,模拟结果更接近实况。同时也表明,在模拟和预报具有对称不稳定的天气系统时,在模式中考虑倾斜对流参数化方案是必要的。 展开更多
关键词 梅雨锋暴雨 对称不稳定 参数化方案 数值模拟
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部