Road traffic crash data are useful tools to support the development, implementation, and assessment of highway safety programs that tend to reduce road traffic crashes. Collecting road traffic crash data aims at gaini...Road traffic crash data are useful tools to support the development, implementation, and assessment of highway safety programs that tend to reduce road traffic crashes. Collecting road traffic crash data aims at gaining a better understanding of road traffic operational problems, locating hazardous road sections, identifying risk factors, developing accurate diagnosis and remedial measures, and evaluating the effectiveness of road safety programs. Furthermore, they can be used by many agencies and businesses such as: law enforcements to identify persons at fault in road traffic crashes;insurers seeking facts about traffic crash claims;road safety researchers to access traffic crash reliable database;decision makers to develop long-term, statewide strategic plans for traffic and highway safety;and highway safety administrators to help educate the public. Given the practical importance of vehicle crash data, this paper presents an overview of the sources, trends and problems associated with road traffic crash data.展开更多
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with...Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.展开更多
Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data main...Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data mainly from the National Performance Management Research Data Set (NPMRDS) and the Louisiana Crash Database were used to analyze Truck Travel Time Reliability Index, commercial vehicle User Delay Costs, and commercial vehicle safety. The results indicate that while Louisiana’s Interstate system remained reliable over the years, some segments were found to be unreliable, which were annually less than 12% of the state’s Interstate system mileage. The User Delay Costs by commercial vehicles on these unreliable segments were, on average, 65.45% of the User Delay Cost by all vehicles on the Interstate highway system between 2016 and 2019, 53.10% between 2020 and 2021, and 70.36% in 2022, which are considerably high. These disproportionate ratios indicate the economic impact of the unreliability of the Interstate system on commercial vehicle operations. Additionally, though the annual crash frequencies remained relatively constant, an increasing proportion of commercial vehicles are involved in crashes, with segments (mileposts) that have high crash frequencies seeming to correspond with locations with recurring congestion on the Interstate highway system. The study highlights the potential of using data to identify areas that need improvement in transportation systems to support better decision-making.展开更多
深入分析交通事故数据可以为规避事故发生、降低事故严重程度提供重要理论依据,然而,在事故数据采集、传输、存储过程中往往会产生数据缺失,导致统计分析结果的准确性下降、模型的误判风险上升。本文以芝加哥2016—2021年的101452条追...深入分析交通事故数据可以为规避事故发生、降低事故严重程度提供重要理论依据,然而,在事故数据采集、传输、存储过程中往往会产生数据缺失,导致统计分析结果的准确性下降、模型的误判风险上升。本文以芝加哥2016—2021年的101452条追尾事故数据为研究对象,将原始数据按照7∶3随机分为训练集和测试集。在训练集数据上,利用生成式插补网络(Generative Adversarial Imputation Network,GAIN)实现对缺失数据的填补。为对比不同数据填补方法的效果,同时选择多重插补(Multiple Imputation by Chained Equations,MICE)算法、期望最大化(Expectation Maximization,EM)填充算法、缺失森林(MissForest)算法和K最近邻(K-Nearest Neighbor,KNN)算法对同一数据集进行数据填补,并基于填补前后变量方差变化比较不同填补算法对数据变异性的影响。在完成数据填补的基础上,构建LightGBM三分类事故严重程度影响因素分析模型。使用原始训练集数据,以及填补后的训练集数据分别训练模型,并使用未经填补的测试集数据检验模型预测效果。结果表明,经缺失值填补后,模型性能得到一定改善,使用GAIN填补数据集训练的模型,相较于原始数据训练的模型,准确率提高了6.84%,F1提高了4.61%,AUC(Area Under the Curve)提高了10.09%,且改善效果优于其他4种填补方法。展开更多
This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe veh...This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe vehicle data and crash data. Travel time performance metrics were derived from the probe vehicle data, and crash counts were obtained from the crash data. Additional variables included road characteristics (traffic volume, road type, segment length) and a categorical variable for the presence of a work zone. A mixed effect linear regression model was employed to identify relationships between road segment crash counts and the selected performance metrics. This was accomplished for two sets of models that include congestion performance measures at different defining threshold values, along with travel time performance measures. The study results indicate that the congestion indicators, certain travel time performance measures, and traffic counts were statistically significant and positively correlated with crash counts. Indicator variables for rural interstate locations and non-active work zones have a stronger influence on crash count than those for municipal interstate locations and active work zones. These findings can inform decision-makers on work zone safety strategies and crash mitigation planning, especially in high traffic volume areas prone to congestion and queues.展开更多
Law enforcement agencies have begun utilizing traffic and crash data to improve traffic law enforcement delivery. However, many agencies often do not have the resources or expertise to harness fully the benefits this ...Law enforcement agencies have begun utilizing traffic and crash data to improve traffic law enforcement delivery. However, many agencies often do not have the resources or expertise to harness fully the benefits this data offers. A free to use, scalable traffic crash hot spot detection tool was developed to aid law enforcement agency decision makers, statewide to the local municipality level. The tool was developed to identify crash hot spots algorithmically with </span><span style="font-family:Verdana;">a range of customizable parameters based on location, date and time, and</span><span style="font-family:Verdana;"> crash factors, enabling quick, dynamic queries. These capabilities provide the ability for law enforcement agencies to conduct “what if” analyses and make data-driven allocation decisions, placing officer resources where they are most needed. The two-step algorithm first identifies potential hot spots based on </span><span style="font-family:Verdana;">crash density and then ranks each hot spot using a standardized z-score </span><span style="font-family:Verdana;">measure of relative significance. To test the viability of the tool, a pilot was conducted identifying 27 hot spots across Wisconsin where targeted enforcement was then deployed. Despite officer skepticism, results from the pilot found officers at sites targeted for speeding and seatbelt violations were nearly twice as likely to initiate traffic stops compared to non-targeted hot spots. Empirical Bayes before-and-after crash analyses found fatal and injury crashes reduced significantly by nearly 11% during the months with targeted enforcement, while property damage crashes and total crashes were unchanged. Overall, the results show the algorithm can identify hotspots where, coupled with targeted enforcement, traffic safety improvements can be made.展开更多
Involvement in road traffic crashes as vehicle occupants is a leading cause of death and serious injury among children. The objective of this study was to investigate crash severity factors and child safety restraint ...Involvement in road traffic crashes as vehicle occupants is a leading cause of death and serious injury among children. The objective of this study was to investigate crash severity factors and child safety restraint use characteristics in order to identify effective countermeasures to increase children's highway safety. Characteristics and percentages of restraint use among child passengers aged 4-13 years were examined using highway crash data from Kansas. The association between restraint use, injury severity and characteristics of children involved in crashes were investigated using OR (odds ratios) and a logistic regression model, which was used to identify risk factors. Results showed that children, who were unrestrained, were seated in the front seat, traveling with drunk drivers and on rural roads, and traveling during nighttime was more vulnerable to severe injury in the case of motor vehicle crashes. The most frequent contributing causes related to crashes involving children included driver's inattention while driving, failure to yield right-of-way, driving too fast, wet roads and animals in the road. Based on identified critical factors, general countermeasure ideas to improve children's traffic safety were suggested, including age-appropriate and size-appropriate seat belt restraints and having children seated in the rear seat. Parents and children must gain better education regarding these safety measures in order to increase child safety on the road.展开更多
The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of t...The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of the separation distances between driveway exits and downstream U-turn locations on the safety and operational performance of vehicles making RTUTs.Crash data are investigated at 179 selected roadway segments,and travel time data are measured using video cameras at 29 locations in the state of Florida,USA.Crash rate models and travel time models are developed based on data collected in the field.It is found that the separation distance between driveway exits and downstream U-turn locations significantly impacts the safety and operational performance of vehicles making right turns followed by U-turns.Based on the research results,the minimum and optimal separation distances between driveways and U-turn locations under different roadway conditions are determined to facilitate driver use of RTUTs.The results of this study can be used for future intersection improvement projects in China.展开更多
文摘Road traffic crash data are useful tools to support the development, implementation, and assessment of highway safety programs that tend to reduce road traffic crashes. Collecting road traffic crash data aims at gaining a better understanding of road traffic operational problems, locating hazardous road sections, identifying risk factors, developing accurate diagnosis and remedial measures, and evaluating the effectiveness of road safety programs. Furthermore, they can be used by many agencies and businesses such as: law enforcements to identify persons at fault in road traffic crashes;insurers seeking facts about traffic crash claims;road safety researchers to access traffic crash reliable database;decision makers to develop long-term, statewide strategic plans for traffic and highway safety;and highway safety administrators to help educate the public. Given the practical importance of vehicle crash data, this paper presents an overview of the sources, trends and problems associated with road traffic crash data.
基金supported by the National Natural Science Foundation (71301119)the Shanghai Natural Science Foundation (12ZR1434100)
文摘Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.
文摘Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data mainly from the National Performance Management Research Data Set (NPMRDS) and the Louisiana Crash Database were used to analyze Truck Travel Time Reliability Index, commercial vehicle User Delay Costs, and commercial vehicle safety. The results indicate that while Louisiana’s Interstate system remained reliable over the years, some segments were found to be unreliable, which were annually less than 12% of the state’s Interstate system mileage. The User Delay Costs by commercial vehicles on these unreliable segments were, on average, 65.45% of the User Delay Cost by all vehicles on the Interstate highway system between 2016 and 2019, 53.10% between 2020 and 2021, and 70.36% in 2022, which are considerably high. These disproportionate ratios indicate the economic impact of the unreliability of the Interstate system on commercial vehicle operations. Additionally, though the annual crash frequencies remained relatively constant, an increasing proportion of commercial vehicles are involved in crashes, with segments (mileposts) that have high crash frequencies seeming to correspond with locations with recurring congestion on the Interstate highway system. The study highlights the potential of using data to identify areas that need improvement in transportation systems to support better decision-making.
文摘深入分析交通事故数据可以为规避事故发生、降低事故严重程度提供重要理论依据,然而,在事故数据采集、传输、存储过程中往往会产生数据缺失,导致统计分析结果的准确性下降、模型的误判风险上升。本文以芝加哥2016—2021年的101452条追尾事故数据为研究对象,将原始数据按照7∶3随机分为训练集和测试集。在训练集数据上,利用生成式插补网络(Generative Adversarial Imputation Network,GAIN)实现对缺失数据的填补。为对比不同数据填补方法的效果,同时选择多重插补(Multiple Imputation by Chained Equations,MICE)算法、期望最大化(Expectation Maximization,EM)填充算法、缺失森林(MissForest)算法和K最近邻(K-Nearest Neighbor,KNN)算法对同一数据集进行数据填补,并基于填补前后变量方差变化比较不同填补算法对数据变异性的影响。在完成数据填补的基础上,构建LightGBM三分类事故严重程度影响因素分析模型。使用原始训练集数据,以及填补后的训练集数据分别训练模型,并使用未经填补的测试集数据检验模型预测效果。结果表明,经缺失值填补后,模型性能得到一定改善,使用GAIN填补数据集训练的模型,相较于原始数据训练的模型,准确率提高了6.84%,F1提高了4.61%,AUC(Area Under the Curve)提高了10.09%,且改善效果优于其他4种填补方法。
文摘This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe vehicle data and crash data. Travel time performance metrics were derived from the probe vehicle data, and crash counts were obtained from the crash data. Additional variables included road characteristics (traffic volume, road type, segment length) and a categorical variable for the presence of a work zone. A mixed effect linear regression model was employed to identify relationships between road segment crash counts and the selected performance metrics. This was accomplished for two sets of models that include congestion performance measures at different defining threshold values, along with travel time performance measures. The study results indicate that the congestion indicators, certain travel time performance measures, and traffic counts were statistically significant and positively correlated with crash counts. Indicator variables for rural interstate locations and non-active work zones have a stronger influence on crash count than those for municipal interstate locations and active work zones. These findings can inform decision-makers on work zone safety strategies and crash mitigation planning, especially in high traffic volume areas prone to congestion and queues.
文摘Law enforcement agencies have begun utilizing traffic and crash data to improve traffic law enforcement delivery. However, many agencies often do not have the resources or expertise to harness fully the benefits this data offers. A free to use, scalable traffic crash hot spot detection tool was developed to aid law enforcement agency decision makers, statewide to the local municipality level. The tool was developed to identify crash hot spots algorithmically with </span><span style="font-family:Verdana;">a range of customizable parameters based on location, date and time, and</span><span style="font-family:Verdana;"> crash factors, enabling quick, dynamic queries. These capabilities provide the ability for law enforcement agencies to conduct “what if” analyses and make data-driven allocation decisions, placing officer resources where they are most needed. The two-step algorithm first identifies potential hot spots based on </span><span style="font-family:Verdana;">crash density and then ranks each hot spot using a standardized z-score </span><span style="font-family:Verdana;">measure of relative significance. To test the viability of the tool, a pilot was conducted identifying 27 hot spots across Wisconsin where targeted enforcement was then deployed. Despite officer skepticism, results from the pilot found officers at sites targeted for speeding and seatbelt violations were nearly twice as likely to initiate traffic stops compared to non-targeted hot spots. Empirical Bayes before-and-after crash analyses found fatal and injury crashes reduced significantly by nearly 11% during the months with targeted enforcement, while property damage crashes and total crashes were unchanged. Overall, the results show the algorithm can identify hotspots where, coupled with targeted enforcement, traffic safety improvements can be made.
文摘Involvement in road traffic crashes as vehicle occupants is a leading cause of death and serious injury among children. The objective of this study was to investigate crash severity factors and child safety restraint use characteristics in order to identify effective countermeasures to increase children's highway safety. Characteristics and percentages of restraint use among child passengers aged 4-13 years were examined using highway crash data from Kansas. The association between restraint use, injury severity and characteristics of children involved in crashes were investigated using OR (odds ratios) and a logistic regression model, which was used to identify risk factors. Results showed that children, who were unrestrained, were seated in the front seat, traveling with drunk drivers and on rural roads, and traveling during nighttime was more vulnerable to severe injury in the case of motor vehicle crashes. The most frequent contributing causes related to crashes involving children included driver's inattention while driving, failure to yield right-of-way, driving too fast, wet roads and animals in the road. Based on identified critical factors, general countermeasure ideas to improve children's traffic safety were suggested, including age-appropriate and size-appropriate seat belt restraints and having children seated in the rear seat. Parents and children must gain better education regarding these safety measures in order to increase child safety on the road.
文摘The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of the separation distances between driveway exits and downstream U-turn locations on the safety and operational performance of vehicles making RTUTs.Crash data are investigated at 179 selected roadway segments,and travel time data are measured using video cameras at 29 locations in the state of Florida,USA.Crash rate models and travel time models are developed based on data collected in the field.It is found that the separation distance between driveway exits and downstream U-turn locations significantly impacts the safety and operational performance of vehicles making right turns followed by U-turns.Based on the research results,the minimum and optimal separation distances between driveways and U-turn locations under different roadway conditions are determined to facilitate driver use of RTUTs.The results of this study can be used for future intersection improvement projects in China.