Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology.Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location,respe...Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology.Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location,respectively.Using these technologies in mouse embryos led to the generation of mouse knocko ut models and many scientific discoveries.The efficacy and specificity of these approaches have significantly increased with the advent of new technology such as cluste red regula rly inters paced short palindromic repeats for targetted gene deletion.However,several limitations including unwanted off-target gene deletion have hindered their widespread use in the field.Crerecombinase technology has provided additional capacity for cell-specific gene deletion.In this review,we provide a summary of currently available literature on the application of this system for targetted deletion of neuronal genes.This article has been constructed to provide some background info rmation for the new trainees on the mechanism and to provide necessary information for the design,and application of the Cre-recombinase system thro ugh reviewing the most f requent promoters that are currently available for genetic manipulation of neuro ns.We additionally will provide a summary of the latest technological developments that can be used for targeting neurons.This may also serve as a general guide for the selection of appropriate models for biomedical research.展开更多
Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with sever...Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with several unknown details. However, unlike in other tissues, a tissue specific inducible Cre recombinase system that allows temporal and spatial deletion of a target DNA fragment is still not available for in vivo functional gene annotation in hepatocytes. In our pursuit to establish such a mouse model, we designed a dual inducible Cre transgene system and tested it in cultured cells. By combining a CCAAT/enhancer binding protein β (C/EBP β) promoter derived Tet-off expression system and the estrogen receptor (ER) mediated functional control, we show a desirable profile of both hepatocyte-specificity and regulability of the Cre expression in a series of critical assessments in the cell culture system, which provides confidence in continuation of our ongoing pursuit in mouse.展开更多
Osteoblasts participate in bone formation, bone mineralization, osteoclast differentiation and many pathological processes. To study the function of genes in osteoblasts using Cre-LoxP system, we generated a mouse lin...Osteoblasts participate in bone formation, bone mineralization, osteoclast differentiation and many pathological processes. To study the function of genes in osteoblasts using Cre-LoxP system, we generated a mouse line expressing the Cre recombinase under the control of the rat Collagenlcd (Collα1) promoter (Collα1-Cre). Two founders were identified by genomic PCR from 16 offsprings, and the integration efficiency is 12.5%. In order to determine the tissue distribution and the activity of Cre recombinase in the transgenic mice, the Coll αl-Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4^Co/Co). Multiple tissue PCR of Collα1-Cre;Smad4^Co/+ mice revealed the restricted Cre activity in bone tissues containing osteoblasts and tendon. LacZ staining in the Collα1-Cre;ROSA26 double transgenic mice revealed that the Cre recombinase began to express in the osteoblasts of calvaria at E14.5. Cre activity was observed in the osteoblasts and osteocytes of P10 double transgenic mice. All these data indicated that the Collα1-Cre transgenic mice could serve as a valuable tool for osteoblast lineage analysis and conditional gene knockout in osteoblasts.展开更多
文摘Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology.Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location,respectively.Using these technologies in mouse embryos led to the generation of mouse knocko ut models and many scientific discoveries.The efficacy and specificity of these approaches have significantly increased with the advent of new technology such as cluste red regula rly inters paced short palindromic repeats for targetted gene deletion.However,several limitations including unwanted off-target gene deletion have hindered their widespread use in the field.Crerecombinase technology has provided additional capacity for cell-specific gene deletion.In this review,we provide a summary of currently available literature on the application of this system for targetted deletion of neuronal genes.This article has been constructed to provide some background info rmation for the new trainees on the mechanism and to provide necessary information for the design,and application of the Cre-recombinase system thro ugh reviewing the most f requent promoters that are currently available for genetic manipulation of neuro ns.We additionally will provide a summary of the latest technological developments that can be used for targeting neurons.This may also serve as a general guide for the selection of appropriate models for biomedical research.
基金supported by Shanghai Science Foundation grants,National Science Foundation of China(No.30570850 and 10574134)National Research Program for Basic Research of China(No.2004CB518804)+1 种基金National Research Program for High Technology(No.2006AA02Z-320 and 2006AA 02Z197)European 6th Program(LSHBCT-2005-019067).
文摘Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with several unknown details. However, unlike in other tissues, a tissue specific inducible Cre recombinase system that allows temporal and spatial deletion of a target DNA fragment is still not available for in vivo functional gene annotation in hepatocytes. In our pursuit to establish such a mouse model, we designed a dual inducible Cre transgene system and tested it in cultured cells. By combining a CCAAT/enhancer binding protein β (C/EBP β) promoter derived Tet-off expression system and the estrogen receptor (ER) mediated functional control, we show a desirable profile of both hepatocyte-specificity and regulability of the Cre expression in a series of critical assessments in the cell culture system, which provides confidence in continuation of our ongoing pursuit in mouse.
基金the National Natural Sci-ence Foundation of China (No. 30430350)the National Science Supporting Program (No. 2006BAI23B01-3).
文摘Osteoblasts participate in bone formation, bone mineralization, osteoclast differentiation and many pathological processes. To study the function of genes in osteoblasts using Cre-LoxP system, we generated a mouse line expressing the Cre recombinase under the control of the rat Collagenlcd (Collα1) promoter (Collα1-Cre). Two founders were identified by genomic PCR from 16 offsprings, and the integration efficiency is 12.5%. In order to determine the tissue distribution and the activity of Cre recombinase in the transgenic mice, the Coll αl-Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4^Co/Co). Multiple tissue PCR of Collα1-Cre;Smad4^Co/+ mice revealed the restricted Cre activity in bone tissues containing osteoblasts and tendon. LacZ staining in the Collα1-Cre;ROSA26 double transgenic mice revealed that the Cre recombinase began to express in the osteoblasts of calvaria at E14.5. Cre activity was observed in the osteoblasts and osteocytes of P10 double transgenic mice. All these data indicated that the Collα1-Cre transgenic mice could serve as a valuable tool for osteoblast lineage analysis and conditional gene knockout in osteoblasts.