Based on Bayes' theorem we point out that the false positive rate must be lower than the intrusion base rate in order to make the Alarm Credibility Probability of the intrusion detection system exceed 50%. We pres...Based on Bayes' theorem we point out that the false positive rate must be lower than the intrusion base rate in order to make the Alarm Credibility Probability of the intrusion detection system exceed 50%. We present the methods that have been used in our developing intrusion detection system AIIDS (artificial immune intrusion detection systems) to increase the creditability of anomaly detection system. These methods include increasing the regularities of the system call trace by use of Hidden Markov Model (HMM), making every antibody or detector has finite lifetime, offering the detector a co-stimulate signal to illustrate whether there is damage in the system according to the integrity, confidentiality, or availability of the system resource.展开更多
Purpose:This study aims to evaluate the accuracy of authorship attributions in scientific publications,focusing on the fairness and precision of individual contributions within academic works.Design/methodology/approa...Purpose:This study aims to evaluate the accuracy of authorship attributions in scientific publications,focusing on the fairness and precision of individual contributions within academic works.Design/methodology/approach:The study analyzes 81,823 publications from the journal PLOS ONE,covering the period from January 2018 to June 2023.It examines the authorship attributions within these publications to try and determine the prevalence of inappropriate authorship.It also investigates the demographic and professional profiles of affected authors,exploring trends and potential factors contributing to inaccuracies in authorship.Findings:Surprisingly,9.14%of articles feature at least one author with inappropriate authorship,affecting over 14,000 individuals(2.56%of the sample).Inappropriate authorship is more concentrated in Asia,Africa,and specific European countries like Italy.Established researchers with significant publication records and those affiliated with companies or nonprofits show higher instances of potential monetary authorship.Research limitations:Our findings are based on contributions as declared by the authors,which implies a degree of trust in their transparency.However,this reliance on self-reporting may introduce biases or inaccuracies into the dataset.Further research could employ additional verification methods to enhance the reliability of the findings.Practical implications:These findings have significant implications for journal publishers,Beyond authorship:Analyzing contributions in PLOS ONE and Maddi,A.,&the challenges of appropriate attribution highlighting the necessity for robust control mechanisms to ensure the integrity of authorship attributions.Moreover,researchers must exercise discernment in determining when to acknowledge a contributor and when to include them in the author list.Addressing these issues is crucial for maintaining the credibility and fairness of academic publications.Originality/value:This study contributes to an understanding of critical issues within academic authorship,shedding light on the prevalence and impact of inappropriate authorship attributions.By calling for a nuanced approach to ensure accurate credit is given where it is due,the study underscores the importance of upholding ethical standards in scholarly publishing.展开更多
Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.Howeve...Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.However,a limited understanding remains of how formal credit affects herders'household expenses.Based on a survey of 544 herders from the Qinghai-Xizang Plateau of China,this study adopted the propensity score matching approach to identify the effect of formal credit on herders'total household expenses,daily expenses,and productive expenses.The results found that average age,grassland mortgage,and other variables significantly affected herders'participation in formal credit.Formal credit could significantly improve household expenses,especially productive expenses.A heterogeneity analysis showed that formal credit had a greater impact on the household total expense for those at higher levels of wealth;however,it significantly affected the productive expense of herders at lower wealth levels.Moreover,the mediating effect indicated that formal credit could affect herders'household income,thus influencing their household expenses.Finally,this study suggests that policies should improve herders'accessibility to formal credit.展开更多
Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients m...Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness.展开更多
In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space...In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.展开更多
To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game mod...To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.展开更多
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all...A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.展开更多
The relationship between credit expansion and banking crises is complex and cannot be fully explained by total credit alone.A systematic analysis of the relationship between the amount and structure of total credit an...The relationship between credit expansion and banking crises is complex and cannot be fully explained by total credit alone.A systematic analysis of the relationship between the amount and structure of total credit and banking crises is important for an objective prediction of the influence of potential financial risks.This paper,drawing on data from 15 selected countries,delves into the power of credit indicators in the early warning of banking crises from the perspectives of industrial structure,sector structure,and term structure of credit.Various machine learning methods were used,including Logistic Regression,Random Forest,Decision Tree,Support Vector Machine(SVM),Bagging,and Boosting models.The empirical findings indicate that credit expansion plays a crucial role in triggering banking crises.However,total credit is better suited for the early warning of short-term banking crises,whereas credit structure is more useful for the early warning of long-term banking crises.Moreover,in an early warning system,identifying key early warning indicators is more meaningful than merely increasing the number of indicators.Machine learning can somewhat enhance the early warning power,but it may not always be robust.Therefore,more attention should be paid to potential systemic banking crises resulting from an imbalance in credit structure while regulating the total credit threshold.展开更多
Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for th...Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for the use of Beidou Navigation Satellite System(BDS)spatiotemporal information to support the certification of origin of agricultural products.The BDS spatiotemporal information agricultural product digital credit system uses such modules as BDS,spatiotemporal information collection,spatiotemporal coding,and spatiotemporal blockchain.It incorporates multi-level joint supervision mechanisms such as government,associations,and users.Starting from the initial production link of agricultural products,it realizes the correspondence and locking of online and offline products,effectively improves the integrity and credibility of information in the production process,finished product quality and circulation process of products,effectively manages the green production and anti-channel conflicts of producers,and provides credible information for consumers,thus realizing the digital credit certification of products.The successful practice of characteristic agricultural products in Yunnan Province has verified the application ability of the BDS spatiotemporal information agricultural product digital credit system.This system has played a significant role in promoting the online and offline locking,credible information,effective supervision and high quality and high price of characteristic agricultural products from the field.The BDS provides services for global digital trade and contributes to the further enhancement of the global application scale of GNSS.展开更多
Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit ca...Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit card dataset, I tackle class imbalance using the Synthetic Minority Oversampling Technique (SMOTE) to enhance modeling efficiency. I compare several machine learning algorithms, including Logistic Regression, Linear Discriminant Analysis, K-nearest Neighbors, Classification and Regression Tree, Naive Bayes, Support Vector, Random Forest, XGBoost, and Light Gradient-Boosting Machine to classify transactions as fraud or genuine. Rigorous evaluation metrics, such as AUC, PRAUC, F1, KS, Recall, and Precision, identify the Random Forest as the best performer in detecting fraudulent activities. The Random Forest model successfully identifies approximately 92% of transactions scoring 90 and above as fraudulent, equating to a detection rate of over 70% for all fraudulent transactions in the test dataset. Moreover, the model captures more than half of the fraud in each bin of the test dataset. SHAP values provide model explainability, with the SHAP summary plot highlighting the global importance of individual features, such as “V12” and “V14”. SHAP force plots offer local interpretability, revealing the impact of specific features on individual predictions. This study demonstrates the potential of machine learning, particularly the Random Forest model, for real-time credit card fraud detection, offering a promising approach to mitigate financial losses and protect consumers.展开更多
The“Announcement on Deepening the Value-Added Tax Reform”clearly outlines the preferential policy regarding incremental retention tax rebates.With the advancement of value-added tax(VAT)reform and the improvement of...The“Announcement on Deepening the Value-Added Tax Reform”clearly outlines the preferential policy regarding incremental retention tax rebates.With the advancement of value-added tax(VAT)reform and the improvement of VAT legislation in China,VAT tax planning for construction enterprises,particularly related to retained tax credits,has become routine.This paper,focusing on the characteristics of construction enterprises,analyzes VAT retained tax credits at the end of the period,the status of tax refunds,practical issues,and related processes,and offers suggestions for policy application and risk prevention.展开更多
This paper investigates the macroeconomic impacts of Internet finance,highlighting its advantages and challenges.Internet finance,a fusion of Internet technology with traditional financial practices,introduces innovat...This paper investigates the macroeconomic impacts of Internet finance,highlighting its advantages and challenges.Internet finance,a fusion of Internet technology with traditional financial practices,introduces innovative models for global asset management,capital financing,payments,investments,and intermediary services.While it enhances the accessibility and efficiency of financial services,it also introduces new risks,such as higher credit default rates.This study explores how Internet finance contributes to financial inclusivity and macroeconomic growth yet poses potential threats to traditional financial stability.The dual aspects of Internet finance are analyzed:its application in existing processes and its capacity to generate novel business models.Furthermore,the paper proposes strategic responses to mitigate the negative impacts of Internet finance,mainly focusing on risk management and regulatory improvements to safeguard economic stability.展开更多
In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term ...In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.展开更多
Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise info...Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise information asymmetry in the credit assessment scenario.First,this research designs a credit risk assessment model based on federated learning and feature selection for micro and small enterprises(MSEs)using multi-dimensional enterprise data and multi-perspective enterprise information.The proposed model includes four main processes:namely encrypted entity alignment,hybrid feature selection,secure multi-party computation,and global model updating.Secondly,a two-step feature selection algorithm based on wrapper and filter is designed to construct the optimal feature set in multi-source heterogeneous data,which can provide excellent accuracy and interpretability.In addition,a local update screening strategy is proposed to select trustworthy model parameters for aggregation each time to ensure the quality of the global model.The results of the study show that the model error rate is reduced by 6.22%and the recall rate is improved by 11.03%compared to the algorithms commonly used in credit risk research,significantly improving the ability to identify defaulters.Finally,the business operations of commercial banks are used to confirm the potential of the proposed model for real-world implementation.展开更多
With the popularity of online payment, how to perform creditcard fraud detection more accurately has also become a hot issue. And withthe emergence of the adaptive boosting algorithm (Adaboost), credit cardfraud detec...With the popularity of online payment, how to perform creditcard fraud detection more accurately has also become a hot issue. And withthe emergence of the adaptive boosting algorithm (Adaboost), credit cardfraud detection has started to use this method in large numbers, but thetraditional Adaboost is prone to overfitting in the presence of noisy samples.Therefore, in order to alleviate this phenomenon, this paper proposes a newidea: using the number of consecutive sample misclassifications to determinethe noisy samples, while constructing a penalty factor to reconstruct thesample weight assignment. Firstly, the theoretical analysis shows that thetraditional Adaboost method is overfitting in a noisy training set, which leadsto the degradation of classification accuracy. To this end, the penalty factorconstructed by the number of consecutive misclassifications of samples isused to reconstruct the sample weight assignment to prevent the classifierfrom over-focusing on noisy samples, and its reasonableness is demonstrated.Then, by comparing the penalty strength of the three different penalty factorsproposed in this paper, a more reasonable penalty factor is selected.Meanwhile, in order to make the constructed model more in line with theactual requirements on training time consumption, the Adaboost algorithmwith adaptive weight trimming (AWTAdaboost) is used in this paper, so thepenalty factor-based AWTAdaboost (PF_AWTAdaboost) is finally obtained.Finally, PF_AWTAdaboost is experimentally validated against other traditionalmachine learning algorithms on credit card fraud datasets and otherdatasets. The results show that the PF_AWTAdaboost method has betterperformance, including detection accuracy, model recall and robustness, thanother methods on the credit card fraud dataset. And the PF_AWTAdaboostmethod also shows excellent generalization performance on other datasets.From the experimental results, it is shown that the PF_AWTAdaboost algorithmhas better classification performance.展开更多
Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to cr...Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.展开更多
Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for ban...Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for banks and other financial institutions to choose suitable investment objects.Additionally,it encourages real estate enterprises to abide by market norms and provide reliable information for the standardized management of the real estate industry.However,Chinese real estate companies are hesitant to disclose their actual operating data due to privacy concerns,making subjective evalu-ation approaches inevitable,occupying important roles in accomplishing Chinese real estate enterprise credit risk assessment tasks.To improve the normative and reliability of credit risk assessment for Chinese real estate enterprises,this study proposes an integrated multi-criteria group decision-making approach.First,a credit risk assessment index for Chinese real estate enterprises is established.Then,the proposed framework combines proportional hesitant fuzzy linguistic term sets and preference ranking organization method for enrichment evaluation II methods.This approach is suitable for processing large amounts of data with high uncertainty,which is often the case in credit risk assessment tasks of Chinese real estate enterprises involving massive subjec-tive evaluation information.Finally,the proposed model is validated through a case study accompanied by sensitivity and comparative analyses to verify its rationality and feasibility.This study contributes to the research on credit assessment for Chinese real estate enterprises and provides a revised paradigm for real estate enterprise credit risk assessment.展开更多
Why do households use different types of loans?Which factors cause borrowers to default?Using a comprehensive survey dataset from Chile,I estimate a partial information model of consumer debt access,lender choice,loan...Why do households use different types of loans?Which factors cause borrowers to default?Using a comprehensive survey dataset from Chile,I estimate a partial information model of consumer debt access,lender choice,loan amount and default.The model consists of a first-stage multinomial logit that explains the choice across the five loan types,plus the options of no access to debt due to credit constraints and a no wish for consumer debt.In the second and third stages,the model assumes a log-linear regression of the debt amount and a logit regression of the default behavior,accounting for the loan type selection probability.Identification is obtained using factors measured at different time periods for the default and the loan type choices.I find that households choose different lenders based on income,education and labor risks.Higher income and education decrease the probability of credit constraints,while increasing bank lending and debt amounts.Unemployment risk and household size increase the chances of all the loan types;however,unemployment decreases the debt amount.Age and wage volatility reduce the probability of all loans.Default decreases with income,education and age,whereas it increases with indebtedness,unemployment,household size,health shocks,and paying previous loans.Counterfactual exercises demonstrate that pension reform,higher requirements for borrowers’capacities,and financial literacy programs could substantially reduce default risk.Financial literacy could greatly reduce arrears,households with credit constraints,the number of debtors and the aggregate debt amounts,especially for non-bank lending.Highlights Chilean borrowers present heterogeneous adverse selection across lender types.No Debt Access decreases with income,age,education,but it increases with risk.Default is associated with income,unemployment,indebtedness and demographics.Paying past loans and health needs are associated with indebtedness and default.Financial literacy programs may be a powerful policy to improve the debt market.展开更多
Purpose:The purpose of this study is to propose an improved credit allocation method that makes the leading author of the paper more distinguishable and makes the deification more robust under malicious manipulations....Purpose:The purpose of this study is to propose an improved credit allocation method that makes the leading author of the paper more distinguishable and makes the deification more robust under malicious manipulations.Design/methodology/approach:We utilize a modified Sigmoid function to handle the fat-tail distributed citation counts.We also remove the target paper in calculating the contribution of co-citations.Following previous studies,we use 30 Nobel Prize-winning papers and their citation networks based on the American Physical Society(APS)and the Microsoft Academic Graph(MAG)dataset to test the accuracy of our proposed method(NCCAS).In addition,we use 654,148 articles published in the field of computer science from 2000 to 2009 in the MAG dataset to validate the distinguishability and robustness of NCCAS.Finding:Compared with the state-of-the-art methods,NCCAS gives the most accurate prediction of Nobel laureates.Furthermore,the leading author of the paper identified by NCCAS is more distinguishable compared with other co-authors.The results by NCCAS are also more robust to malicious manipulation.Finally,we perform ablation studies to show the contribution of different components in our methods.Research limitations:Due to limited ground truth on the true leading author of a work,the accuracy of NCCAS and other related methods can only be tested in Nobel Physics Prize-winning papers.Practical implications:NCCAS is successfully applied to a large number of publications,demonstrating its potential in analyzing the relationship between the contribution and the recognition of authors with different by-line orders.Originality/value:Compared with existing methods,NCCAS not only identifies the leading author of a paper more accurately,but also makes the deification more distinguishable and more robust,providing a new tool for related studies.展开更多
This study aims to fill the gap in the literature by specifically investigating the impact of country risk on the credit risk of the banking sectors operating in Brazil,Russia,India,China,and South Africa(BRICS),emerg...This study aims to fill the gap in the literature by specifically investigating the impact of country risk on the credit risk of the banking sectors operating in Brazil,Russia,India,China,and South Africa(BRICS),emerging countries.More specifically,we explore whether the country-specific risks,namely financial,economic,and political risks significantly impact the BRICS banking sectors’non-performing loans and also probe which risk has the most outstanding effect on credit risk.To do so,we perform panel data analysis using the quantile estimation approach covering the period 2004–2020.The empirical results reveal that the country risk significantly leads to increasing the banking sector’s credit risk and this effect is prominent in the banking sector of countries with a higher degree of non-performing loans(Q.25=−0.105,Q.50=−0.131,Q.75=−0.153,Q.95=−0.175).Furthermore,the results underscore that an emerging country’s political,economic,and financial instabilities are strongly associated with increasing the banking sector’s credit risk and a rise in political risk in particular has the most positive prominent impact on the banking sector of countries with a higher degree of non-performing loans(Q.25=−0.122,Q.50=−0.141,Q.75=−0.163,Q.95=−0.172).Moreover,the results suggest that,in addition to the banking sectorspecific determinants,credit risk is significantly impacted by the financial market development,lending interest rate,and global risk.The results are robust and have significant policy suggestions for many policymakers,bank executives,researchers,and analysts.展开更多
文摘Based on Bayes' theorem we point out that the false positive rate must be lower than the intrusion base rate in order to make the Alarm Credibility Probability of the intrusion detection system exceed 50%. We present the methods that have been used in our developing intrusion detection system AIIDS (artificial immune intrusion detection systems) to increase the creditability of anomaly detection system. These methods include increasing the regularities of the system call trace by use of Hidden Markov Model (HMM), making every antibody or detector has finite lifetime, offering the detector a co-stimulate signal to illustrate whether there is damage in the system according to the integrity, confidentiality, or availability of the system resource.
文摘Purpose:This study aims to evaluate the accuracy of authorship attributions in scientific publications,focusing on the fairness and precision of individual contributions within academic works.Design/methodology/approach:The study analyzes 81,823 publications from the journal PLOS ONE,covering the period from January 2018 to June 2023.It examines the authorship attributions within these publications to try and determine the prevalence of inappropriate authorship.It also investigates the demographic and professional profiles of affected authors,exploring trends and potential factors contributing to inaccuracies in authorship.Findings:Surprisingly,9.14%of articles feature at least one author with inappropriate authorship,affecting over 14,000 individuals(2.56%of the sample).Inappropriate authorship is more concentrated in Asia,Africa,and specific European countries like Italy.Established researchers with significant publication records and those affiliated with companies or nonprofits show higher instances of potential monetary authorship.Research limitations:Our findings are based on contributions as declared by the authors,which implies a degree of trust in their transparency.However,this reliance on self-reporting may introduce biases or inaccuracies into the dataset.Further research could employ additional verification methods to enhance the reliability of the findings.Practical implications:These findings have significant implications for journal publishers,Beyond authorship:Analyzing contributions in PLOS ONE and Maddi,A.,&the challenges of appropriate attribution highlighting the necessity for robust control mechanisms to ensure the integrity of authorship attributions.Moreover,researchers must exercise discernment in determining when to acknowledge a contributor and when to include them in the author list.Addressing these issues is crucial for maintaining the credibility and fairness of academic publications.Originality/value:This study contributes to an understanding of critical issues within academic authorship,shedding light on the prevalence and impact of inappropriate authorship attributions.By calling for a nuanced approach to ensure accurate credit is given where it is due,the study underscores the importance of upholding ethical standards in scholarly publishing.
基金funding from the National Natural Science Foundation of China (72303086)the Leading Scientist Project of Qinghai Province, China (2023-NK-147)+1 种基金the Consulting Project of Chinese Academy of Engineering (2023-XY-28,2022-XY-139)the Fundamental Research Funds for the Central Universities, China (lzujbky-2022-sp13)
文摘Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.However,a limited understanding remains of how formal credit affects herders'household expenses.Based on a survey of 544 herders from the Qinghai-Xizang Plateau of China,this study adopted the propensity score matching approach to identify the effect of formal credit on herders'total household expenses,daily expenses,and productive expenses.The results found that average age,grassland mortgage,and other variables significantly affected herders'participation in formal credit.Formal credit could significantly improve household expenses,especially productive expenses.A heterogeneity analysis showed that formal credit had a greater impact on the household total expense for those at higher levels of wealth;however,it significantly affected the productive expense of herders at lower wealth levels.Moreover,the mediating effect indicated that formal credit could affect herders'household income,thus influencing their household expenses.Finally,this study suggests that policies should improve herders'accessibility to formal credit.
基金supported by Key Research and Development Program of China (No.2022YFC3005401)Key Research and Development Program of Yunnan Province,China (Nos.202203AA080009,202202AF080003)+1 种基金Science and Technology Achievement Transformation Program of Jiangsu Province,China (BA2021002)Fundamental Research Funds for the Central Universities (Nos.B220203006,B210203024).
文摘Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness.
基金supported by the Jiangsu University Philosophy and Social Science Research Project(Grant No.2019SJA1326).
文摘In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.
基金supported by the National Natural Science Foundation of China(71973001).
文摘To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.
基金supported by the Institutional Fund Projects(IFPIP-1481-611-1443)the Key Projects of Natural Science Research in Anhui Higher Education Institutions(2022AH051909)+1 种基金the Provincial Quality Project of Colleges and Universities in Anhui Province(2022sdxx020,2022xqhz044)Bengbu University 2021 High-Level Scientific Research and Cultivation Project(2021pyxm04)。
文摘A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.
基金funded by the Chongqing Social Sciences Planning Project (2023NDQN22)the Social Sciences and Philosophy Project of the Chongqing Municipal Education Commission (23SKGH097)the Youth Program of Science and Technology Research of Chongqing Municipal Education Commission (KJQN202300545)。
文摘The relationship between credit expansion and banking crises is complex and cannot be fully explained by total credit alone.A systematic analysis of the relationship between the amount and structure of total credit and banking crises is important for an objective prediction of the influence of potential financial risks.This paper,drawing on data from 15 selected countries,delves into the power of credit indicators in the early warning of banking crises from the perspectives of industrial structure,sector structure,and term structure of credit.Various machine learning methods were used,including Logistic Regression,Random Forest,Decision Tree,Support Vector Machine(SVM),Bagging,and Boosting models.The empirical findings indicate that credit expansion plays a crucial role in triggering banking crises.However,total credit is better suited for the early warning of short-term banking crises,whereas credit structure is more useful for the early warning of long-term banking crises.Moreover,in an early warning system,identifying key early warning indicators is more meaningful than merely increasing the number of indicators.Machine learning can somewhat enhance the early warning power,but it may not always be robust.Therefore,more attention should be paid to potential systemic banking crises resulting from an imbalance in credit structure while regulating the total credit threshold.
基金Supported by Yunnan Provincial Science and Technology Plan Project(202102AE090051).
文摘Spatiotemporal information,positioning and navigation services have become important elements of new type infrastructure.The rapid development of global digital trade provides a large-scale application scenario for the use of Beidou Navigation Satellite System(BDS)spatiotemporal information to support the certification of origin of agricultural products.The BDS spatiotemporal information agricultural product digital credit system uses such modules as BDS,spatiotemporal information collection,spatiotemporal coding,and spatiotemporal blockchain.It incorporates multi-level joint supervision mechanisms such as government,associations,and users.Starting from the initial production link of agricultural products,it realizes the correspondence and locking of online and offline products,effectively improves the integrity and credibility of information in the production process,finished product quality and circulation process of products,effectively manages the green production and anti-channel conflicts of producers,and provides credible information for consumers,thus realizing the digital credit certification of products.The successful practice of characteristic agricultural products in Yunnan Province has verified the application ability of the BDS spatiotemporal information agricultural product digital credit system.This system has played a significant role in promoting the online and offline locking,credible information,effective supervision and high quality and high price of characteristic agricultural products from the field.The BDS provides services for global digital trade and contributes to the further enhancement of the global application scale of GNSS.
文摘Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit card dataset, I tackle class imbalance using the Synthetic Minority Oversampling Technique (SMOTE) to enhance modeling efficiency. I compare several machine learning algorithms, including Logistic Regression, Linear Discriminant Analysis, K-nearest Neighbors, Classification and Regression Tree, Naive Bayes, Support Vector, Random Forest, XGBoost, and Light Gradient-Boosting Machine to classify transactions as fraud or genuine. Rigorous evaluation metrics, such as AUC, PRAUC, F1, KS, Recall, and Precision, identify the Random Forest as the best performer in detecting fraudulent activities. The Random Forest model successfully identifies approximately 92% of transactions scoring 90 and above as fraudulent, equating to a detection rate of over 70% for all fraudulent transactions in the test dataset. Moreover, the model captures more than half of the fraud in each bin of the test dataset. SHAP values provide model explainability, with the SHAP summary plot highlighting the global importance of individual features, such as “V12” and “V14”. SHAP force plots offer local interpretability, revealing the impact of specific features on individual predictions. This study demonstrates the potential of machine learning, particularly the Random Forest model, for real-time credit card fraud detection, offering a promising approach to mitigate financial losses and protect consumers.
文摘The“Announcement on Deepening the Value-Added Tax Reform”clearly outlines the preferential policy regarding incremental retention tax rebates.With the advancement of value-added tax(VAT)reform and the improvement of VAT legislation in China,VAT tax planning for construction enterprises,particularly related to retained tax credits,has become routine.This paper,focusing on the characteristics of construction enterprises,analyzes VAT retained tax credits at the end of the period,the status of tax refunds,practical issues,and related processes,and offers suggestions for policy application and risk prevention.
文摘This paper investigates the macroeconomic impacts of Internet finance,highlighting its advantages and challenges.Internet finance,a fusion of Internet technology with traditional financial practices,introduces innovative models for global asset management,capital financing,payments,investments,and intermediary services.While it enhances the accessibility and efficiency of financial services,it also introduces new risks,such as higher credit default rates.This study explores how Internet finance contributes to financial inclusivity and macroeconomic growth yet poses potential threats to traditional financial stability.The dual aspects of Internet finance are analyzed:its application in existing processes and its capacity to generate novel business models.Furthermore,the paper proposes strategic responses to mitigate the negative impacts of Internet finance,mainly focusing on risk management and regulatory improvements to safeguard economic stability.
文摘In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.
基金funded by the State Grid Jiangsu Electric Power Company(Grant No.JS2020112)the National Natural Science Foundation of China(Grant No.62272236).
文摘Federated learning has been used extensively in business inno-vation scenarios in various industries.This research adopts the federated learning approach for the first time to address the issue of bank-enterprise information asymmetry in the credit assessment scenario.First,this research designs a credit risk assessment model based on federated learning and feature selection for micro and small enterprises(MSEs)using multi-dimensional enterprise data and multi-perspective enterprise information.The proposed model includes four main processes:namely encrypted entity alignment,hybrid feature selection,secure multi-party computation,and global model updating.Secondly,a two-step feature selection algorithm based on wrapper and filter is designed to construct the optimal feature set in multi-source heterogeneous data,which can provide excellent accuracy and interpretability.In addition,a local update screening strategy is proposed to select trustworthy model parameters for aggregation each time to ensure the quality of the global model.The results of the study show that the model error rate is reduced by 6.22%and the recall rate is improved by 11.03%compared to the algorithms commonly used in credit risk research,significantly improving the ability to identify defaulters.Finally,the business operations of commercial banks are used to confirm the potential of the proposed model for real-world implementation.
基金This research was funded by Innovation and Entrepreneurship Training Program for College Students in Hunan Province in 2022(3915).
文摘With the popularity of online payment, how to perform creditcard fraud detection more accurately has also become a hot issue. And withthe emergence of the adaptive boosting algorithm (Adaboost), credit cardfraud detection has started to use this method in large numbers, but thetraditional Adaboost is prone to overfitting in the presence of noisy samples.Therefore, in order to alleviate this phenomenon, this paper proposes a newidea: using the number of consecutive sample misclassifications to determinethe noisy samples, while constructing a penalty factor to reconstruct thesample weight assignment. Firstly, the theoretical analysis shows that thetraditional Adaboost method is overfitting in a noisy training set, which leadsto the degradation of classification accuracy. To this end, the penalty factorconstructed by the number of consecutive misclassifications of samples isused to reconstruct the sample weight assignment to prevent the classifierfrom over-focusing on noisy samples, and its reasonableness is demonstrated.Then, by comparing the penalty strength of the three different penalty factorsproposed in this paper, a more reasonable penalty factor is selected.Meanwhile, in order to make the constructed model more in line with theactual requirements on training time consumption, the Adaboost algorithmwith adaptive weight trimming (AWTAdaboost) is used in this paper, so thepenalty factor-based AWTAdaboost (PF_AWTAdaboost) is finally obtained.Finally, PF_AWTAdaboost is experimentally validated against other traditionalmachine learning algorithms on credit card fraud datasets and otherdatasets. The results show that the PF_AWTAdaboost method has betterperformance, including detection accuracy, model recall and robustness, thanother methods on the credit card fraud dataset. And the PF_AWTAdaboostmethod also shows excellent generalization performance on other datasets.From the experimental results, it is shown that the PF_AWTAdaboost algorithmhas better classification performance.
基金supported by the National Key R&D Program of China(Nos.2022YFB3104103,and 2019QY1406)the National Natural Science Foundation of China(Nos.61732022,61732004,61672020,and 62072131).
文摘Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.
基金supported by the National Natural Science Foundation of China(Grant Nos.72171182 and 72031009)the Spanish Ministry of Economy and Competitiveness through the Spanish National Research Project(Grant No.PGC2018-099402-B-I00)the Spanish postdoctoral fellowship program Ramon y Cajal(Grant No.RyC-2017-21978).
文摘Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for banks and other financial institutions to choose suitable investment objects.Additionally,it encourages real estate enterprises to abide by market norms and provide reliable information for the standardized management of the real estate industry.However,Chinese real estate companies are hesitant to disclose their actual operating data due to privacy concerns,making subjective evalu-ation approaches inevitable,occupying important roles in accomplishing Chinese real estate enterprise credit risk assessment tasks.To improve the normative and reliability of credit risk assessment for Chinese real estate enterprises,this study proposes an integrated multi-criteria group decision-making approach.First,a credit risk assessment index for Chinese real estate enterprises is established.Then,the proposed framework combines proportional hesitant fuzzy linguistic term sets and preference ranking organization method for enrichment evaluation II methods.This approach is suitable for processing large amounts of data with high uncertainty,which is often the case in credit risk assessment tasks of Chinese real estate enterprises involving massive subjec-tive evaluation information.Finally,the proposed model is validated through a case study accompanied by sensitivity and comparative analyses to verify its rationality and feasibility.This study contributes to the research on credit assessment for Chinese real estate enterprises and provides a revised paradigm for real estate enterprise credit risk assessment.
文摘Why do households use different types of loans?Which factors cause borrowers to default?Using a comprehensive survey dataset from Chile,I estimate a partial information model of consumer debt access,lender choice,loan amount and default.The model consists of a first-stage multinomial logit that explains the choice across the five loan types,plus the options of no access to debt due to credit constraints and a no wish for consumer debt.In the second and third stages,the model assumes a log-linear regression of the debt amount and a logit regression of the default behavior,accounting for the loan type selection probability.Identification is obtained using factors measured at different time periods for the default and the loan type choices.I find that households choose different lenders based on income,education and labor risks.Higher income and education decrease the probability of credit constraints,while increasing bank lending and debt amounts.Unemployment risk and household size increase the chances of all the loan types;however,unemployment decreases the debt amount.Age and wage volatility reduce the probability of all loans.Default decreases with income,education and age,whereas it increases with indebtedness,unemployment,household size,health shocks,and paying previous loans.Counterfactual exercises demonstrate that pension reform,higher requirements for borrowers’capacities,and financial literacy programs could substantially reduce default risk.Financial literacy could greatly reduce arrears,households with credit constraints,the number of debtors and the aggregate debt amounts,especially for non-bank lending.Highlights Chilean borrowers present heterogeneous adverse selection across lender types.No Debt Access decreases with income,age,education,but it increases with risk.Default is associated with income,unemployment,indebtedness and demographics.Paying past loans and health needs are associated with indebtedness and default.Financial literacy programs may be a powerful policy to improve the debt market.
基金This work was supported by University Innovation Research Group of Chongqing(No.CXQT21005).
文摘Purpose:The purpose of this study is to propose an improved credit allocation method that makes the leading author of the paper more distinguishable and makes the deification more robust under malicious manipulations.Design/methodology/approach:We utilize a modified Sigmoid function to handle the fat-tail distributed citation counts.We also remove the target paper in calculating the contribution of co-citations.Following previous studies,we use 30 Nobel Prize-winning papers and their citation networks based on the American Physical Society(APS)and the Microsoft Academic Graph(MAG)dataset to test the accuracy of our proposed method(NCCAS).In addition,we use 654,148 articles published in the field of computer science from 2000 to 2009 in the MAG dataset to validate the distinguishability and robustness of NCCAS.Finding:Compared with the state-of-the-art methods,NCCAS gives the most accurate prediction of Nobel laureates.Furthermore,the leading author of the paper identified by NCCAS is more distinguishable compared with other co-authors.The results by NCCAS are also more robust to malicious manipulation.Finally,we perform ablation studies to show the contribution of different components in our methods.Research limitations:Due to limited ground truth on the true leading author of a work,the accuracy of NCCAS and other related methods can only be tested in Nobel Physics Prize-winning papers.Practical implications:NCCAS is successfully applied to a large number of publications,demonstrating its potential in analyzing the relationship between the contribution and the recognition of authors with different by-line orders.Originality/value:Compared with existing methods,NCCAS not only identifies the leading author of a paper more accurately,but also makes the deification more distinguishable and more robust,providing a new tool for related studies.
文摘This study aims to fill the gap in the literature by specifically investigating the impact of country risk on the credit risk of the banking sectors operating in Brazil,Russia,India,China,and South Africa(BRICS),emerging countries.More specifically,we explore whether the country-specific risks,namely financial,economic,and political risks significantly impact the BRICS banking sectors’non-performing loans and also probe which risk has the most outstanding effect on credit risk.To do so,we perform panel data analysis using the quantile estimation approach covering the period 2004–2020.The empirical results reveal that the country risk significantly leads to increasing the banking sector’s credit risk and this effect is prominent in the banking sector of countries with a higher degree of non-performing loans(Q.25=−0.105,Q.50=−0.131,Q.75=−0.153,Q.95=−0.175).Furthermore,the results underscore that an emerging country’s political,economic,and financial instabilities are strongly associated with increasing the banking sector’s credit risk and a rise in political risk in particular has the most positive prominent impact on the banking sector of countries with a higher degree of non-performing loans(Q.25=−0.122,Q.50=−0.141,Q.75=−0.163,Q.95=−0.172).Moreover,the results suggest that,in addition to the banking sectorspecific determinants,credit risk is significantly impacted by the financial market development,lending interest rate,and global risk.The results are robust and have significant policy suggestions for many policymakers,bank executives,researchers,and analysts.