The service performance of the turbine blade root of an aero-engine depends on the microstructures in its superficial layer.This work investigated the surface deformation structures of turbine blade root of single cry...The service performance of the turbine blade root of an aero-engine depends on the microstructures in its superficial layer.This work investigated the surface deformation structures of turbine blade root of single crystal nickel-based superalloy produced under different creep feed grinding conditions.Gradient microstructures in the superficial layer were clarified and composed of a severely deformed layer(DFL)with nano-sized grains(48–67 nm)at the topmost surface,a DFL with submicron-sized grains(66–158 nm)and micron-sized laminated structures at the subsurface,and a dislocation accumulated layer extending to the bulk material.The formation of such gradient microstructures was found to be related to the graded variations in the plastic strain and strain rate induced in the creep feed grinding process,which were as high as 6.67 and 8.17×10^(7)s^(−1),respectively.In the current study,the evolution of surface gradient microstructures was essentially a transition process from a coarse single crystal to nano-sized grains and,simultaneously,from one orientation of a single crystal to random orientations of polycrystals,during which the dislocation slips dominated the creep feed grinding induced microstructure deformation of single crystal nickel-based superalloy.展开更多
Ni3Al-based superalloy IC10 is widely used in high temperature components of aeroengines because of its superior mechanical properties.In this paper,the creep feed grinding properties of IC10 were investigated experim...Ni3Al-based superalloy IC10 is widely used in high temperature components of aeroengines because of its superior mechanical properties.In this paper,the creep feed grinding properties of IC10 were investigated experimentally.The effects of grinding parameters on the grinding forces and temperature were examined.Moreover,the influences of surface roughness and hardening on the high-cycle fatigue life of IC10 specimens were studied.To control the creep feed grinding parameters and enhance the fatigue life of IC10 components,the experimental results were summarized to offer a useful reference point.It is concluded that,the grinding depth is the most important factor which influencing the grinding forces and temperature;the surface roughness is the main and unfavorable factor on the fatigue life of IC10,while the surface hardening has a positive influence on the fatigue life;to obtain a better surface quality and improve the fatigue life of IC 10,the recommended grinding parameter domain involves wheel speed 2[15,20]m/s,feed rate∈[150,200]mm/min,and grinding depth∈[0.4,0.5]mm.展开更多
This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CB...This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CBN wheels was conducted,mainly involving abrasive wheel wear behavior and maximum material removal rate below surface burn limit.It was found that the diamond wheel would produce much better grinding results including lower wheel wear rate and higher maximum material removal rate.Then the surface integrity obtained at different level of material removal rate was characterized with the utilization of the diamond wheel.The poor ductility of thisγ-TiAl intermetallic material was found to have a marginal effect on the surface integrity,as no severe surface defects such as material pullout were generated during the stable wheel wear stage.For the involved operating parameters,a deformation layer was produced with~10μm or more in thickness depending on the material removal rate used.Meanwhile,a work-hardened layer extending to more than 100μm was produced with a maximum microhardness of above 520 HV0.05(bulk value 360 HV0.05).The residual stress remained compressive,with a value of above-100 MPa and even up to-500 MPa for an elevated material removal rate.Shearing chip was the main chip type,indicating good wheel sharpness in the grinding process.展开更多
In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels we...In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels were comparatively analyzed during creep feed grinding.The infuences of the grinding parameters(abrasive wheel speed,workpiece infeed speed,and depth of cut)on the grinding force,grinding temperature,surface roughness,surface morphology,tool wear,and grinding ratio were analyzed comprehensively.The experimental results showed that there was no significant difference in terms of the machined surface quality and grinding characteristics of FGH96 during grinding with the two types of abrasive wheels.This was mainly because the grinding advantages of the MA wheel were weakened for the difficult-to-cut FGH96 material.Moreover,both the BA and MA abrasive wheeIs exhibited severe tool wear in the form of wheel clogging and workpiece material adhesion.Finally,an analytical model for prediction of the grinding ratio was established by combining the tool wear volume,grinding force,and grinding length.The acceptable errors between the predicted and experimental grinding ratios(ranging from 0.6 to 1.8)were 7.56%and 6.31%for the BA and MA abrasive wheels,respectively.This model can be used to evaluate quantitatively the grinding performance of an alumina abrasive wheel,and is therefore helpful for optimizing the grinding parameters in the creep feed grinding process.展开更多
In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with an...In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out.展开更多
The ultrahigh strength 300M steel has been commonly used in the manufacture of aircraft landing gear and rotor shaft parts due to its excellent mechanical properties.Creep feed grinding is one of the essential operati...The ultrahigh strength 300M steel has been commonly used in the manufacture of aircraft landing gear and rotor shaft parts due to its excellent mechanical properties.Creep feed grinding is one of the essential operations during the whole component manufacturing processes.In this work,the feasibility of creep feed grinding of 300M steel by using the hard zirconium corundum wheel was theoretically and experimentally evaluated.A variety of responses including grinding forces,temperature fields,specific grinding energy,surface integrity and chip modes were carefully recorded.Besides,the mechanism of ground surface profile generation and the spatial frequency spectrum of the surface profile were tentatively analyzed.It was found that the wheel speed has a relative influence on the grinding forces and temperatures of which the work hardening effect dominates the material removal with lower wheel speed while the thermal softening becomes crucial as the wheel speed exceeds the critical value for the studied 300M steel.Furthermore,a scattered spatial frequency spectrum for the generated surface profile was noticed with lower wheel speed while the spectrum gathers towards the lower frequency values with higher amplitude as the wheel speed increases.The shearing chip and flowing chip dominates the main chip type,indicating the excellent abrasive sharpness during the grinding process.In general,the used zirconium corundum wheel presents feasibility for the creep feed grinding of 300M steel because of the high material removal rate,absence of surface burn,low wheel wear and higher compressive residual stresses.展开更多
The burning mechanism during creep feed grinding of titanium alloy with SiC wheel is stud- ied. A CBN intermittent creep feed grinding technology combining the advantages of CBN, intermittent grinding and creep feed ...The burning mechanism during creep feed grinding of titanium alloy with SiC wheel is stud- ied. A CBN intermittent creep feed grinding technology combining the advantages of CBN, intermittent grinding and creep feed grinding is recommended. The results show that the intermittent CBN wheel has a bright future in resolving the problem of workpiece burning during creep feed grinding of titanium al- loys展开更多
Gamma titanium-aluminum(γ-TiAl)intermetallic compounds are increasingly used in manufacturing key hot-end components(e.g.,blade tenon)in aero engines due to their high specific strength and lightweight properties.Cre...Gamma titanium-aluminum(γ-TiAl)intermetallic compounds are increasingly used in manufacturing key hot-end components(e.g.,blade tenon)in aero engines due to their high specific strength and lightweight properties.Creep feed profile grinding(CFPG)as a crucial precision process that is applied to produce the final profile of the blade tenon.However,sudden surface burns and microcracks of machined c-TiAl blade tenon often occur because of its low plasticity and high strength during grinding processes,leading to poor surface integrity.In this work,CFPG experiments based on the profile characteristics ofγ-TiAl blade tenon were performed and an associated undeformed chip thickness model considering grain–workpiece contact condition was established to explore the evolution of the surface integrity.Subsequently,the surface integrity was analyzed at different positions of the blade tenon in terms of surface roughness and morphology,metallographic structure,microhardness,and residual stress.Results show that the profile characteristics of blade tenon have a significant influence on machined surface integrity because of the thermomechanical effect at various detecting positions.The residual stress was established based on the undeformed chip thickness model considering the profile structure,with a prediction error of 10%–15%.The thermomechanical effect is more obvious at the bottom area,where the surface roughness,work hardening degree,and subsurface plastic deformation range are the largest,while the values at the bevel area are the smallest.Based on the undeformed chip thickness model,a residual stress finite element simulation was conducted by employing thermomechanical coupled effects.In addition,the error between the simulation and the experiment was between 10%–15%.Strain and strain rate equations were established through the relationship between material displacement and depth.The average strain and strain rate of the ground surface when ap is 1.0 mm are 18.8%and 33.2%larger than when ap is 0.5 mm,respectively.This study deepens the understanding of surface integrity under the influence of CFPGγ-TiAl and provides a practical reference and theoretical basis for realizing high-quality profile grinding of other complex parts.展开更多
A creative conception is proposed to enhance heat transfer in grinding contact zone through jet impinging on the basis of analysis on the mechanism of burn during creep feed grinding, and a new apparatus of slotted &a...A creative conception is proposed to enhance heat transfer in grinding contact zone through jet impinging on the basis of analysis on the mechanism of burn during creep feed grinding, and a new apparatus of slotted & perforated electroplated CBN grinding wheel with radial jet is developed, the effect on heat transfer is studied through the experiment of intermitted creep feed grinding. Experimental results show that the technology of enhancing heat transfer through jet impinging is valid to raise the efficiency of heat transfer in grinding contact zone and it is widely applied to solve the problem in grinding burn for difficult to machine materials.展开更多
Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surf...Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surface quality in terms of surface topography, subsurface microstructure,microhardness and residual stress obtained under different grinding conditions were evaluated comparatively. Experimental results indicated that the grinding force was influenced significantly by the competing predominance between the grinding parameters and the cross-sectional root workpiece profile. In addition, the root workpiece surface, including the root peak and valley regions, was produced with the large difference in surface quality due to the nonuniform grinding loads along the root workpiece profile in normal section. Detailed results showed that the surface roughness, subsurface plastic deformation and work hardening level of the root valley region were higher by up to25%, 20% and 7% in average than those obtained in the root peak region, respectively, in the current investigation. Finally, the superior parameters were recommended in the creep feed profile grinding of the fir-tree blade root forms. This study is helpful to provide industry guidance to optimize the machining process for the high-valued parts with complicated profiles.展开更多
基金This work was financially supported by the National Nat-ural Science Foundation of China(Nos.51921003,51775275 and 51905363)the Natural Science Foundation of Jiangsu Province(No.BK20190940)+1 种基金the National Major Science and Technology Projects of China(No.2017-VII-0002-0095)the Six Talents Summit Project in Jiangsu Province(No.JXQC-002).
文摘The service performance of the turbine blade root of an aero-engine depends on the microstructures in its superficial layer.This work investigated the surface deformation structures of turbine blade root of single crystal nickel-based superalloy produced under different creep feed grinding conditions.Gradient microstructures in the superficial layer were clarified and composed of a severely deformed layer(DFL)with nano-sized grains(48–67 nm)at the topmost surface,a DFL with submicron-sized grains(66–158 nm)and micron-sized laminated structures at the subsurface,and a dislocation accumulated layer extending to the bulk material.The formation of such gradient microstructures was found to be related to the graded variations in the plastic strain and strain rate induced in the creep feed grinding process,which were as high as 6.67 and 8.17×10^(7)s^(−1),respectively.In the current study,the evolution of surface gradient microstructures was essentially a transition process from a coarse single crystal to nano-sized grains and,simultaneously,from one orientation of a single crystal to random orientations of polycrystals,during which the dislocation slips dominated the creep feed grinding induced microstructure deformation of single crystal nickel-based superalloy.
基金supported by NSAF(No.U1830122)the National Natural Science Foundation of China(No.51775443)。
文摘Ni3Al-based superalloy IC10 is widely used in high temperature components of aeroengines because of its superior mechanical properties.In this paper,the creep feed grinding properties of IC10 were investigated experimentally.The effects of grinding parameters on the grinding forces and temperature were examined.Moreover,the influences of surface roughness and hardening on the high-cycle fatigue life of IC10 specimens were studied.To control the creep feed grinding parameters and enhance the fatigue life of IC10 components,the experimental results were summarized to offer a useful reference point.It is concluded that,the grinding depth is the most important factor which influencing the grinding forces and temperature;the surface roughness is the main and unfavorable factor on the fatigue life of IC10,while the surface hardening has a positive influence on the fatigue life;to obtain a better surface quality and improve the fatigue life of IC 10,the recommended grinding parameter domain involves wheel speed 2[15,20]m/s,feed rate∈[150,200]mm/min,and grinding depth∈[0.4,0.5]mm.
基金the National Natural Science Foundation of China(Nos.51921003 and 51775275)the Major Special Projects of Aero-engine and Gas Turbine of China(2017-VII-0002-0095)+1 种基金the Six Talents Summit Project in Jiangsu Province of China(No.JXQC-002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX180256)。
文摘This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CBN wheels was conducted,mainly involving abrasive wheel wear behavior and maximum material removal rate below surface burn limit.It was found that the diamond wheel would produce much better grinding results including lower wheel wear rate and higher maximum material removal rate.Then the surface integrity obtained at different level of material removal rate was characterized with the utilization of the diamond wheel.The poor ductility of thisγ-TiAl intermetallic material was found to have a marginal effect on the surface integrity,as no severe surface defects such as material pullout were generated during the stable wheel wear stage.For the involved operating parameters,a deformation layer was produced with~10μm or more in thickness depending on the material removal rate used.Meanwhile,a work-hardened layer extending to more than 100μm was produced with a maximum microhardness of above 520 HV0.05(bulk value 360 HV0.05).The residual stress remained compressive,with a value of above-100 MPa and even up to-500 MPa for an elevated material removal rate.Shearing chip was the main chip type,indicating good wheel sharpness in the grinding process.
基金supported by the National Natural Science Foundation of China(Grant Nos.51775275 and 51921003)National Major Science and Technology Project(Grant No.2017-Ⅶ-0002-0095)+2 种基金Funding for Outstanding Doctoral Dissertation in NUAA(Grant No.BCXJ19-06)the Six Talents Summit Project in Jiangsu Province(Grant No.JXQC-002)Fundamental Research Funds for the Central Universities(Grant No.NP2018110).
文摘In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels were comparatively analyzed during creep feed grinding.The infuences of the grinding parameters(abrasive wheel speed,workpiece infeed speed,and depth of cut)on the grinding force,grinding temperature,surface roughness,surface morphology,tool wear,and grinding ratio were analyzed comprehensively.The experimental results showed that there was no significant difference in terms of the machined surface quality and grinding characteristics of FGH96 during grinding with the two types of abrasive wheels.This was mainly because the grinding advantages of the MA wheel were weakened for the difficult-to-cut FGH96 material.Moreover,both the BA and MA abrasive wheeIs exhibited severe tool wear in the form of wheel clogging and workpiece material adhesion.Finally,an analytical model for prediction of the grinding ratio was established by combining the tool wear volume,grinding force,and grinding length.The acceptable errors between the predicted and experimental grinding ratios(ranging from 0.6 to 1.8)were 7.56%and 6.31%for the BA and MA abrasive wheels,respectively.This model can be used to evaluate quantitatively the grinding performance of an alumina abrasive wheel,and is therefore helpful for optimizing the grinding parameters in the creep feed grinding process.
基金Jiangsu Natural Science Fund of China (BK2001048)
文摘In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out.
基金supported by the National Natural Science Foundation of China(U19372708)。
文摘The ultrahigh strength 300M steel has been commonly used in the manufacture of aircraft landing gear and rotor shaft parts due to its excellent mechanical properties.Creep feed grinding is one of the essential operations during the whole component manufacturing processes.In this work,the feasibility of creep feed grinding of 300M steel by using the hard zirconium corundum wheel was theoretically and experimentally evaluated.A variety of responses including grinding forces,temperature fields,specific grinding energy,surface integrity and chip modes were carefully recorded.Besides,the mechanism of ground surface profile generation and the spatial frequency spectrum of the surface profile were tentatively analyzed.It was found that the wheel speed has a relative influence on the grinding forces and temperatures of which the work hardening effect dominates the material removal with lower wheel speed while the thermal softening becomes crucial as the wheel speed exceeds the critical value for the studied 300M steel.Furthermore,a scattered spatial frequency spectrum for the generated surface profile was noticed with lower wheel speed while the spectrum gathers towards the lower frequency values with higher amplitude as the wheel speed increases.The shearing chip and flowing chip dominates the main chip type,indicating the excellent abrasive sharpness during the grinding process.In general,the used zirconium corundum wheel presents feasibility for the creep feed grinding of 300M steel because of the high material removal rate,absence of surface burn,low wheel wear and higher compressive residual stresses.
文摘The burning mechanism during creep feed grinding of titanium alloy with SiC wheel is stud- ied. A CBN intermittent creep feed grinding technology combining the advantages of CBN, intermittent grinding and creep feed grinding is recommended. The results show that the intermittent CBN wheel has a bright future in resolving the problem of workpiece burning during creep feed grinding of titanium al- loys
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-IV-002-001 and P2023-B-IV-003-001)+5 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No.HTL-A-22G12)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23-0355)the China Postdoctoral Science Foundation(No.2023T160315)the Interdisciplinary Innovation Fund for Doctoral Students of Nanjing University of Aeronautics and Astronautics(KXKCXJJ202305).
文摘Gamma titanium-aluminum(γ-TiAl)intermetallic compounds are increasingly used in manufacturing key hot-end components(e.g.,blade tenon)in aero engines due to their high specific strength and lightweight properties.Creep feed profile grinding(CFPG)as a crucial precision process that is applied to produce the final profile of the blade tenon.However,sudden surface burns and microcracks of machined c-TiAl blade tenon often occur because of its low plasticity and high strength during grinding processes,leading to poor surface integrity.In this work,CFPG experiments based on the profile characteristics ofγ-TiAl blade tenon were performed and an associated undeformed chip thickness model considering grain–workpiece contact condition was established to explore the evolution of the surface integrity.Subsequently,the surface integrity was analyzed at different positions of the blade tenon in terms of surface roughness and morphology,metallographic structure,microhardness,and residual stress.Results show that the profile characteristics of blade tenon have a significant influence on machined surface integrity because of the thermomechanical effect at various detecting positions.The residual stress was established based on the undeformed chip thickness model considering the profile structure,with a prediction error of 10%–15%.The thermomechanical effect is more obvious at the bottom area,where the surface roughness,work hardening degree,and subsurface plastic deformation range are the largest,while the values at the bevel area are the smallest.Based on the undeformed chip thickness model,a residual stress finite element simulation was conducted by employing thermomechanical coupled effects.In addition,the error between the simulation and the experiment was between 10%–15%.Strain and strain rate equations were established through the relationship between material displacement and depth.The average strain and strain rate of the ground surface when ap is 1.0 mm are 18.8%and 33.2%larger than when ap is 0.5 mm,respectively.This study deepens the understanding of surface integrity under the influence of CFPGγ-TiAl and provides a practical reference and theoretical basis for realizing high-quality profile grinding of other complex parts.
文摘A creative conception is proposed to enhance heat transfer in grinding contact zone through jet impinging on the basis of analysis on the mechanism of burn during creep feed grinding, and a new apparatus of slotted & perforated electroplated CBN grinding wheel with radial jet is developed, the effect on heat transfer is studied through the experiment of intermitted creep feed grinding. Experimental results show that the technology of enhancing heat transfer through jet impinging is valid to raise the efficiency of heat transfer in grinding contact zone and it is widely applied to solve the problem in grinding burn for difficult to machine materials.
基金financial support for this work by the National Natural Science Foundation of China (No. 51775275)the Funding of Jiangsu Innovation Program for Graduate Education of China (KYCX170245)+2 种基金the Funding for Outstanding Doctoral Dissertation in NUAA of China (BCXJ17-04)the Fundamental Research Funds for the Central University of China (No. NP2018110)the National Science and Technology Major Project and the Six Talents Summit Project in Jiangsu Province of China (No.JXQC-002)。
文摘Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surface quality in terms of surface topography, subsurface microstructure,microhardness and residual stress obtained under different grinding conditions were evaluated comparatively. Experimental results indicated that the grinding force was influenced significantly by the competing predominance between the grinding parameters and the cross-sectional root workpiece profile. In addition, the root workpiece surface, including the root peak and valley regions, was produced with the large difference in surface quality due to the nonuniform grinding loads along the root workpiece profile in normal section. Detailed results showed that the surface roughness, subsurface plastic deformation and work hardening level of the root valley region were higher by up to25%, 20% and 7% in average than those obtained in the root peak region, respectively, in the current investigation. Finally, the superior parameters were recommended in the creep feed profile grinding of the fir-tree blade root forms. This study is helpful to provide industry guidance to optimize the machining process for the high-valued parts with complicated profiles.