In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were con...In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.展开更多
The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and ...The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.展开更多
The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa f...The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour.展开更多
A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation...A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation of the alloy during the creep ageing process,including dislocations and multiple precipitates,have been characterized in detail by X-ray diffraction(XRD)and transmission electron microscopy(TEM).For the yield strength,the model considers the multiphase strengthening behavior of the alloy based on strengthening mechanisms,which includes shearable T1 precipitate strengthening,non-shearable T1 precipitate strengthening andθ′precipitate strengthening.Based on creep deformation mechanism,the“multi-stage”creep behavior of the alloy is predicted by introducing the effects of interacting microstructural variables,including the radius of multiple precipitates,dislocation density and solute concentration,into the creep stress−strain model.It is concluded that the results calculated by the model are in a good agreement with the experimental data,which validates the proposed model.展开更多
Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by f...Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.展开更多
Creep age forming(CAF)is an advanced forming technology that combines creep deformation and age hardening processes.When compared with the conventional forming technologies including roll bending and shot-peen forming...Creep age forming(CAF)is an advanced forming technology that combines creep deformation and age hardening processes.When compared with the conventional forming technologies including roll bending and shot-peen forming,CAF has many advantages of low residual stress,excellent dimensional stability,good service performance and short production cycle.It is an optimal technique for precise manufacturing for shape and properties of large-scale complicated thinwalled components of light-weight and high strength aluminum alloys in the aviation and aerospace industries.Nevertheless,CAF has an inevitable disadvantage that a large amount of springback occurs after unloading,which brings a challenge on the accurate shape forming and property tailoring of components.Therefore,how to achieve accurate prediction and control of springback has always been a bottleneck hindering the development of CAF to more industrial applications.After the factors of affecting springback and measures of reducing springback are summarized from the internal and external aspects,constitutive models for predicting springback and springback compensation methods for CAF of aluminum alloy panel components are reviewed.Then,a review of research progresses on tool design for CAF is presented.Finally,in view of the key issue that it is difficult to predict and control the shape and properties of components during CAF,the technical challenges are discussed and future development trends of CAF are prospected.展开更多
The initial temper of the material may directly affect the whole creep age forming (CAF) process. In terms of creep deformation and stress relaxation, using the constant-stress creep aging and constant-strain stress...The initial temper of the material may directly affect the whole creep age forming (CAF) process. In terms of creep deformation and stress relaxation, using the constant-stress creep aging and constant-strain stress relaxation aging tests, the relationship between initial temper and CAF formability is investigated for an Al-Zn-Mg-Cu alloy at 165 ℃ for 18 h. Three tempers are selected as the initial tempers in CAF, viz., solution, retrogression and re-solution. The CAF formability of this alloy with initial temper of retrogression is the best, and the creep strain of the retrogression tempered specimen after creep aging of 18 h is about 1.21 and 1.34 times than that of the solution and the re-solution tempered specimens, respectively. The calculated stress exponents of this alloy with three initial tempers range from 7.3 to 9.5, indicating that the CAF of this alloy is mainly controlled by the dislocation creep. The various formability for three initial tempers are attributed to different inhibitions of the transgranular precipitates on the dislocation movement. For the retrogression temper, the initial fine and uniformly distributed precipitates are seriously coarsened after 6 h of CAF, which minimally inhibit the dislocation movement. While, for the re-solution temper, the fine precipitates are re-precipitated in the matrix of the alloy, which observably hinder the dislocation movement and lead to the worst formability.展开更多
In the creep fatigue crack growth of GH4169 alloy,oxidation is a prominent damage source,which is mainly manifested as the oxidation damage zone in front of crack tip.In order to investigate the property of the oxidat...In the creep fatigue crack growth of GH4169 alloy,oxidation is a prominent damage source,which is mainly manifested as the oxidation damage zone in front of crack tip.In order to investigate the property of the oxidation damage zone formed in the creep fatigue crack growth,crack growth tests of directly aged GH4169 alloy were conducted at 650℃ in air under various load conditions.Interrupted tests were performed to observe the damage characteristics at crack tip.Block tests were systematically executed to quantify the dependency of oxidation damage zone size on load and holding time.The crack propagation of the GH4169 alloy has a close relationship with grain boundary oxidation at 650℃.An oxidation damage zone in front of crack tip includes intergranular microcracks and oxidised but uncracked grain boundaries.Its size has been calculated from transient crack growth rate and described as a function of maximum stress intensity factor and holding time.Based on oxidation damage zone size,a novel model has been developed to predict the creep fatigue crack growth rate of the GH4169 alloy at 650℃.展开更多
基金Project(2010CB731700)supported by the National Basic Research Program of China
文摘In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by Ph D Programs Foundation of Ministry of Education of China
文摘The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.
基金Project(2017YFB0306300)supported by the National Key R&D Program of ChinaProjects(51601060,51675538)supported by the National Natural Science Foundation of China。
文摘The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour.
基金the National Key R&D Program of China(No.2017YFB0306300)the National Natural Science Foundation of China(Nos.51675538,51601060)+1 种基金the State Key Laboratory of High-performance Complex Manufacturing,China(No.ZZYJKT2018-18)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2018zzts151).
文摘A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation of the alloy during the creep ageing process,including dislocations and multiple precipitates,have been characterized in detail by X-ray diffraction(XRD)and transmission electron microscopy(TEM).For the yield strength,the model considers the multiphase strengthening behavior of the alloy based on strengthening mechanisms,which includes shearable T1 precipitate strengthening,non-shearable T1 precipitate strengthening andθ′precipitate strengthening.Based on creep deformation mechanism,the“multi-stage”creep behavior of the alloy is predicted by introducing the effects of interacting microstructural variables,including the radius of multiple precipitates,dislocation density and solute concentration,into the creep stress−strain model.It is concluded that the results calculated by the model are in a good agreement with the experimental data,which validates the proposed model.
基金Project(2021YFB3400903) supported by the National Key R&D Program of ChinaProject(1053320211480) supported by the Science and Technology Innovation Project of Graduate Students of Central South University,China。
文摘Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.
基金financial support from the Key Program of the National Natural Science Foundation of China (No.51235010)the National Science Fund for Excellent Young Scholars (No.51522509)the National Natural Science Foundation of China (NO.51905424)
文摘Creep age forming(CAF)is an advanced forming technology that combines creep deformation and age hardening processes.When compared with the conventional forming technologies including roll bending and shot-peen forming,CAF has many advantages of low residual stress,excellent dimensional stability,good service performance and short production cycle.It is an optimal technique for precise manufacturing for shape and properties of large-scale complicated thinwalled components of light-weight and high strength aluminum alloys in the aviation and aerospace industries.Nevertheless,CAF has an inevitable disadvantage that a large amount of springback occurs after unloading,which brings a challenge on the accurate shape forming and property tailoring of components.Therefore,how to achieve accurate prediction and control of springback has always been a bottleneck hindering the development of CAF to more industrial applications.After the factors of affecting springback and measures of reducing springback are summarized from the internal and external aspects,constitutive models for predicting springback and springback compensation methods for CAF of aluminum alloy panel components are reviewed.Then,a review of research progresses on tool design for CAF is presented.Finally,in view of the key issue that it is difficult to predict and control the shape and properties of components during CAF,the technical challenges are discussed and future development trends of CAF are prospected.
基金supported by the National Natural Science Foundation of China for Key Program (51235010)the National Science Fund for Excellent Young Scholars (51522509) of China+2 种基金Fundamental Research Funds for the Central Universities (3102014KYJD001) of Chinathe Marie Curie International Research Staff Exchange Scheme (IRSES, MatProFuture, project no: 318968)within the 7th EC Framework Programme (FP7)the ‘‘111" Project (B08040)
文摘The initial temper of the material may directly affect the whole creep age forming (CAF) process. In terms of creep deformation and stress relaxation, using the constant-stress creep aging and constant-strain stress relaxation aging tests, the relationship between initial temper and CAF formability is investigated for an Al-Zn-Mg-Cu alloy at 165 ℃ for 18 h. Three tempers are selected as the initial tempers in CAF, viz., solution, retrogression and re-solution. The CAF formability of this alloy with initial temper of retrogression is the best, and the creep strain of the retrogression tempered specimen after creep aging of 18 h is about 1.21 and 1.34 times than that of the solution and the re-solution tempered specimens, respectively. The calculated stress exponents of this alloy with three initial tempers range from 7.3 to 9.5, indicating that the CAF of this alloy is mainly controlled by the dislocation creep. The various formability for three initial tempers are attributed to different inhibitions of the transgranular precipitates on the dislocation movement. For the retrogression temper, the initial fine and uniformly distributed precipitates are seriously coarsened after 6 h of CAF, which minimally inhibit the dislocation movement. While, for the re-solution temper, the fine precipitates are re-precipitated in the matrix of the alloy, which observably hinder the dislocation movement and lead to the worst formability.
基金supported by the National Key R&D Program of China(No.2022YFF0609300)the National Major Science and Technology Projects of China(J2019-VI-0021-0137).
文摘In the creep fatigue crack growth of GH4169 alloy,oxidation is a prominent damage source,which is mainly manifested as the oxidation damage zone in front of crack tip.In order to investigate the property of the oxidation damage zone formed in the creep fatigue crack growth,crack growth tests of directly aged GH4169 alloy were conducted at 650℃ in air under various load conditions.Interrupted tests were performed to observe the damage characteristics at crack tip.Block tests were systematically executed to quantify the dependency of oxidation damage zone size on load and holding time.The crack propagation of the GH4169 alloy has a close relationship with grain boundary oxidation at 650℃.An oxidation damage zone in front of crack tip includes intergranular microcracks and oxidised but uncracked grain boundaries.Its size has been calculated from transient crack growth rate and described as a function of maximum stress intensity factor and holding time.Based on oxidation damage zone size,a novel model has been developed to predict the creep fatigue crack growth rate of the GH4169 alloy at 650℃.