期刊文献+
共找到378篇文章
< 1 2 19 >
每页显示 20 50 100
Effects of stabilizing heat treatment on microstructures and creep behavior of Zn-10Al-2Cu-0.02Ti alloy 被引量:3
1
作者 林高用 张锐 +2 位作者 王莉 雷玉霞 贺家健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期86-91,共6页
The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti... The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment. 展开更多
关键词 Zn-10Al-2Cu-0.02Ti alloy stabilizing heat treatment microstructure creep behavior
下载PDF
Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project 被引量:8
2
作者 Yu Zhang Wei-ya Xu +2 位作者 Jian-fu Shao Hai-bin Zhao Wei Wang 《Water Science and Engineering》 EI CAS CSCD 2015年第1期55-62,共8页
There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties... There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project. 展开更多
关键词 Rock mechanics Clastic rock creep behavior Triaxial creep test Burgers creep model Xiangjiaba Hydropower Project
下载PDF
Creep behavior of SnAgCu solders with rare earth Ce doping 被引量:13
3
作者 张亮 薛松柏 +4 位作者 皋利利 曾广 陈燕 禹胜林 盛重 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第3期412-417,共6页
Extensive testing was carried out to study the effects of rare earth Ce doping on the properties of SnAgCu solder alloys.The addition of 0.03%(mass fraction) rare earth Ce into SnAgCu solder may improve its mechanical... Extensive testing was carried out to study the effects of rare earth Ce doping on the properties of SnAgCu solder alloys.The addition of 0.03%(mass fraction) rare earth Ce into SnAgCu solder may improve its mechanical properties,but slightly lower its melting temperature.The tensile creep behavior of bulk SnAgCuCe solders was reported and compared with SnAgCu solders.It is found that SnAgCuCe solders show higher creep resistance than SnAgCu alloys.Moreover,Dorn model and Garofalo model are successfully used to describe the creep behavior of SnAgCu and SnAgCuCe alloys.The parameters of the two creep constitutive equations for SnAgCu and SnAgCuCe solders are determined from separated constitutive relations and experimental results.Nonlinear least-squares fitting is selected to determine the model constants.The experimental data of the stress-creep strain rate curves are in good agreement with the theoretical ones. 展开更多
关键词 rare earth Ce SnAgCu solder creep behavior constitutive equations
下载PDF
Creep behavior and mechanical properties of Al-Li-S4 alloy at different aging temperatures 被引量:6
4
作者 ZHOU Chang ZHAN Li-hua +8 位作者 SHEN Ru-lin ZHAO Xing YU Hai-liang HUANG Ming-hui LI He YANG You-liang HU Li-bin LIU De-bo HU Zheng-gen 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1168-1175,共8页
Creep age forming techniques have been widely used in aerospace industries. In this study, we investigated the effect of aging temperature(143 °C-163 °C) on the creep behavior of Al-Li-S4 aluminum alloy and ... Creep age forming techniques have been widely used in aerospace industries. In this study, we investigated the effect of aging temperature(143 °C-163 °C) on the creep behavior of Al-Li-S4 aluminum alloy and their mechanical properties at room temperature. The mechanical properties were tested by tensile testing, and the microstructural evolution at different aging temperatures was examined by transmission electron microscopy. Results show that the creep strains and the room-temperature mechanical properties after creep aging increase with the aging temperature. As the aging temperature increases, the creep strain increases from 0.018% at 143 °C to 0.058% at 153 °C, and then to 0.094% at 163 °C. Within 25 h aging, the number of creep steps increases and the duration time of the same steps is shortened with the growth of aging temperatures. Therefore, the increase in aging temperatures accelerates the progress of the entire creep. Two main strengthening precipitates θ′(Al2 Cu) and T1(Al2 Cu Li) phases were characterized. This work indicates that the creep strain and mechanical properties of Al-Li-S4 alloys can be improved by controlling aging temperatures. 展开更多
关键词 Al-Li-S4 alloy creep behavior mechanical properties aging temperature
下载PDF
Experimental research on creep behaviors of sandstone under uniaxial compressive and tensile stresses 被引量:3
5
作者 Baoyun Zhao Dongyan Liu Qian Dong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期438-444,共7页
The consideration of time dependence is essential for the study of deformation and fracturing processes of rock materials, especially for those subjected to strong compressive and tensile stresses. In this paper, the ... The consideration of time dependence is essential for the study of deformation and fracturing processes of rock materials, especially for those subjected to strong compressive and tensile stresses. In this paper, the self-developed direct tension device and creep testing machine RLW-2000M are used to conduct the creep tests on red sandstone under uniaxial compressive and tensile stresses. The short-term and long-term creep behaviors of rocks under compressive and tensile stresses are investigated, as well as the long-term strength of rocks. It is shown that, under low-stress levels, the creep curve of sandstone consists of decay and steady creep stages; while under high-stress levels, it presents the accelerated creep stage and creep fracture presents characteristics of brittle materials. The relationship between tensile stress and time under uniaxial tension is also put forward. Finally, a nonlinear viscoelastoplastic creep model is used to describe the creep behaviors of rocks under uniaxial compressive and tensile stresses. 展开更多
关键词 laboratory test creep behaviors uniaxial compressive and tensile stresses creep model
下载PDF
Experimental Study on the Creep Behavior of Recombinant Bamboo 被引量:3
6
作者 Yang Wei Kunpeng Zhao +2 位作者 Chen Hang Si Chen Mingmin Ding 《Journal of Renewable Materials》 SCIE EI 2020年第3期251-273,共23页
The creep behavior of bamboo due to the complicated influences of environment and stress will lead to a sustained increase in deformation,which serious effects the service performance of structures.To investigate the ... The creep behavior of bamboo due to the complicated influences of environment and stress will lead to a sustained increase in deformation,which serious effects the service performance of structures.To investigate the creep behavior of recombinant bamboo,twenty-four recombinant bamboo specimens were tested under lasting compressive and tensile loads at different load levels.The typical failure modes of recombinant bamboo under a lasting load at a high load level were buckling failure and brittle fracturing due to creep compressive creep and tensile creep development,respectively.At a high load level,the creep deformation of recombinant bamboo initially develops unsteadily and increases rapidly until failure;at a low load level,creep deformation rapidly develops in the early stage and stabilizes in the middle and late stages.The load level has notable effects on the overall creep deformation and the proportion of creep deformation.The residual deformation of creep will generally increase and the recovery of creep will decrease with increasing load level.Based on the Burgers model,predictive models that can take the load levels into account were proposed to evaluate the compressive and tensile creep behaviors of recombinant bamboo.The proposed models can be used to accurately evaluate the strain-time behavior of recombinant bamboo. 展开更多
关键词 BAMBOO creep load level Burgers model creep behavior predictive model
下载PDF
Effects of cold rolling deformation on microstructure,hardness,and creep behavior of high nitrogen austenitic stainless steel 被引量:2
7
作者 孙世成 孙贵训 +3 位作者 江忠浩 季长涛 刘家安 连建设 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期379-384,共6页
Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolli... Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading. 展开更多
关键词 high nitrogen austenitic stainless steel cold deformation nanoindentation tests creep behavior
下载PDF
CREEP BEHAVIOR OF γ-TiAl POLYSYNTHETICALLY TWINNED CRYSTALS 被引量:2
8
作者 Y.G. Zhang J.G. Lin Y.J. Zhou and C.Q. Chen(Department of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100083, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期577-583,共7页
Creep behavior of γ-TiAl polysynthetically twinned (PST) crystals has been investigated at temperature between 700 and 800℃. The results show that the creep behavior of the crystals is strongly dependent on the angl... Creep behavior of γ-TiAl polysynthetically twinned (PST) crystals has been investigated at temperature between 700 and 800℃. The results show that the creep behavior of the crystals is strongly dependent on the angle between the lamellar boundaries and loading axis. The samples with the angle φ=45 deg. have the lowest creep resistance, while the samples with φ=0 deg., rather than φ=90 deg.,show the strongest creep resistance. The stress exponent and creep activation energy for the power law creep vary with the orientations of samples, which indicates that the creep mechanisms of the samples with different angle φ are quite different.The deformation substructure has been examined by transmission electron microscopy (TEM),which shows that both gliding, perhaps also climbing, of dislocations and twinning contribute to the creep deformation with some particular observation in the samples with φ=90 deg. in which rotation of the γ plates across a true twin boundary was observed, which indicates the deformation mechanism of the samples is different from the samples in other orientations. 展开更多
关键词 TiAl alloy PST crystal creep behavior lamellar microstructure
下载PDF
Effect of the precipitation state on high temperature tensile and creep behaviors of Mg-15Gd alloy 被引量:2
9
作者 Shuxia Ouyang Guangyu Yang +3 位作者 He Qin Chunhui Wang Shifeng Luo Wanqi Jie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3459-3469,共11页
Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will tr... Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures. 展开更多
关键词 Mg-Gd alloys Precipitation state High temperature tensile properties Tensile creep behaviors Stress-promoted precipitation
下载PDF
Role of P,S and B on Creep Behavior of Alloy 718 被引量:3
10
作者 Zhuangqi HU, Hongwei SONG, Shouren GUO and Wenru SUN Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第4期399-402,共4页
The doping of phosphorus, sulfur and boron in IN718 superalloy can remarkably influence the creep behavior. The modifications of the minor elements seem not to vary the stress exponent and the influences primarily con... The doping of phosphorus, sulfur and boron in IN718 superalloy can remarkably influence the creep behavior. The modifications of the minor elements seem not to vary the stress exponent and the influences primarily concentrate on the effective diffusion coefficient. A pronounced beneficial interaction between P and B and a weaker detrimental interaction between P and S have been obtained. The preexponential frequency constant is proved to be strongly related with the creep activation energy because of the so-called compensation effect. The compensation temperature has been determined to be about 1080 K, which corresponds to the transformation temperature from rapidly coarsened γ'' phase to δ phase. It has been proposed that trace elements can influence the effective diffusion coefficient individually or cooperatively, which in turn either retard or speed the creep process. 展开更多
关键词 Role of P S and B on creep behavior of Alloy 718
下载PDF
Nanoindentation Characterization of Creep-fatigue Interaction on Local Creep Behavior of P92 Steel Welded Joint 被引量:1
11
作者 Yuxuan Song Yi Ma +3 位作者 Zhouxin Pan Yuebing Li Taihua Zhang Zengliang Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期85-97,共13页
In modern fossil and nuclear power plants,the components are subjected to creep,fatigue,and creep-fatigue(CF)due to frequent start-up and shut-down operations at high temperatures.The CF interaction on the in-service ... In modern fossil and nuclear power plants,the components are subjected to creep,fatigue,and creep-fatigue(CF)due to frequent start-up and shut-down operations at high temperatures.The CF interaction on the in-service P92 steel welded joint was investigated by strain-controlled CF tests with different dwell times of 30,120,300,600 and 900 s at 650℃.Based on the observations of the fracture surface by scanning electron microscope(SEM),the character-istic microstructure of fatigue-induced damage was found for the CF specimens with short dwell times(30 and 120 s).The hardness,elastic modulus and creep deformation near the fracture edges of four typical CF specimens with 30,120,600 and 900 s dwell times were measured by nanoindentation.Compared to specimens with post-weld heat treatment(PWHT),lower hardness and creep strength were found for all CF specimens.In addition,significant reduc-tions in hardness,elastic modulus,and creep strength were measured near the fracture edges for the CF specimens with short dwell times compared to the PWHT specimens.Compared to PWHT specimens(0.007),the increased strain rate sensitivities(SRS)of 0.010 to 0.17 were estimated from secondary creep.The increased values of SRS indicate that the room temperature creeps behavior is strongly affected by the decrease in dislocation density after the CF tests. 展开更多
关键词 P92 steel Welded joint creep-fatigue interaction NANOINDENTATION creep behavior
下载PDF
Investigation on creep behavior of warm frozen silty sand under thermo-mechanical coupling loads 被引量:1
12
作者 ZHANG Feng SHI Sheng +1 位作者 FENG De-cheng CAI Lei-zhou 《Journal of Mountain Science》 SCIE CSCD 2021年第7期1951-1965,共15页
In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical co... In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical coupling loads,a series of triaxial creep tests were carried out under different temperatures and stresses.The test results reveal that the creep strains decrease as the consolidation stress increases,and finally tend to be equal under the same loading stress,regardless of whether the stress is isotropic or deviatoric.Additionally,warm frozen silty sand is highly sensitive to temperature,which greatly influences the creep strain both in the consolidation stage and loading stage.Furthermore,based on the creep test phenomena,a new creep model that considers the influence of the stress level,temperature,hardening,and damage effect was established and experimentally validated.Finally,the sensitivity of the model parameters was analyzed,and it was found that the creep curve transitions from the attenuation creep stage to the non-attenuation creep stage as the temperature coefficient and stress coefficient increases.The hardening effect gradually changes to the damage effect as the coupling coefficient of the hardening and damage increases. 展开更多
关键词 creep behavior Warm frozen silty sand Constitutive model Hardening and damage
下载PDF
Unsaturated Creep Behaviors of Weak Intercalated Soils in Soft Rock of Badong Formation 被引量:4
13
作者 ZHU Yan-Bo YU Hong-Ming 《Journal of Mountain Science》 SCIE CSCD 2015年第6期1460-1470,共11页
The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for t... The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for the stability of cutting slopes. Because the deformation of weak intercalated soils is significantly affected by water content due to the strong water sensitivity, it is necessary to study the influence of matric suction on the creep behaviors of weak intercalated soils. In order to find out the unsaturated creep characters of weak intercalated soils, a GDS unsaturated triaxial apparatus was used. Then the triaxial creep experiments on weak intercalated soil samples under varying matric suction were conducted to obtain the unsaturated creep curves. The results show that the weak intercalated soils have obvious creep behaviors, and the creep strain is in nonlinear relationship with stress and time. When the matric suction is constant, a larger deviator stress will lead to a larger creep strain; When the deviator stress is constant, a smaller matric suction will lead to a larger creep strain. Based on the Mesri creep model, an improved creep model for weak intercalated soils under varying matric suction was established, in which the relationship of stress-strain was expressed with a hyperbolic function, and the relationship of strain-time was expressed with power functions in stages. Then an unsaturated creep model including stress-matric suction-strain-time for weak intercalated soils was established based on the power function relationship between matric suction and Ed(a parameter of the improved creep model). The comparison of the calculated values of creep model and the experimental values shows that the creep behaviors of weak intercalated soils can be predicted by the unsaturated creep model by and large. 展开更多
关键词 Badong formation Weak intercalated soils Unsaturated creep behaviors Soil triaxial apparatus creep model
下载PDF
High-temperature Creep Behavior Characterization of Asphalt Mixture based on Micromechanical Modeling and Virtual Test 被引量:1
14
作者 马涛 ZHANG Deyu +1 位作者 ZHAO Yongli HUANG Xiaoming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1311-1318,共8页
The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical mode... The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical model of asphalt mixture was established after analyzing the irregular shape and gradation of coarse aggregates, the viscoelastic property of asphalt mastic, and the random distribution of air voids within the asphalt mixture. Virtual uniaxial static creep test at 60 ℃ was conducted by using Particle Flow Code in three dimensions(PFC3D) and was validated by laboratory test. Based on virtual creep test, the micromechanical characteristics between aggregates, within asphalt mastic, and between aggregate and asphalt mastic were analyzed for the asphalt mixture. It is proved that the virtual test based on the micromechanical model can efficiently predict the creep deformation of asphalt mixture. And the high-temperature behavior of asphalt mixture was characterized from micromechanical perspective. 展开更多
关键词 asphalt mixture creep behavior micromechanical modeling discrete element method
下载PDF
STATISTIC MODELING OF THE CREEP BEHAVIOR OF METAL MATRIX COMPOSITES BASED ON FINITE ELEMENT ANALYSIS
15
作者 岳珠峰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第4期421-434,共14页
The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep... The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep behavior and the material micro geometric parameters. The unit cell models were used to calculate the macroscopic creep behavior with different micro geometric parameters of fibers on different loading directions. The influence of the geometric parameters of the fibers and loading directions on the macroscopic creep behavior had been obtained, and described quantitatively. The matrix/fiber interface had been considered by a third layer, matrix/fiber interlayer, in the unit cells with different creep properties and thickness. Based on the numerical results of the unit cell models, a statistic model had been presented for the plane randomly-distributed-fiber MMCs. The fiber breakage had been taken into account in the statistic model for it starts experimentally early in the creep life. With the distribution of the geometric parameters of the fibers, the results of the statistic model agree well with the experiments. With the statistic model, the influence of the geometric parameters and the breakage of the fibers as well as the properties and thickness of, the interlayer on the macroscopic steady creep rate have been discussed. 展开更多
关键词 unit cell model finite element method MMCS creep behavior breakage of fiber statistic model fiber parameters and distribution
下载PDF
CREEP BEHAVIORS OF Pt-RE ALLOYS AT HIGH TEMPERATURES 被引量:1
16
作者 Hu,Changyi Chen,Fusheng He,Huachun Institute of Precious Metals,Kunming 650221,China 《中国有色金属学会会刊:英文版》 CSCD 1993年第2期80-83,共4页
The creep behaviors of Pt-RE alloys have been studied at 1200℃ and 1400℃.The results show that asmall amount of RE elements improves the creep behaviors of platinum greatly.The creep behaviors of PtGd0.5,PtLa0.5 and... The creep behaviors of Pt-RE alloys have been studied at 1200℃ and 1400℃.The results show that asmall amount of RE elements improves the creep behaviors of platinum greatly.The creep behaviors of PtGd0.5,PtLa0.5 and PtLa0.3 Gd0.2,are best among all the alloys studied.As far as the creep behaviors are concerned,the traditional heat-resistance alloy PtGd10 can be replaced by PtGd0.5.Particularly,the properities of PtGd0.5are near to those of PtRb10.For most of the Pt-RE alloys,long-time,static,super high-temperature treatment inair is of no advantage to the creep rupture life.The mechanisms of the effects of rare-earths on high-temperaturecreep properties of platinum are discussed. 展开更多
关键词 Pt-RE ALLOYS high-temperature creep behaviorS
下载PDF
Uniaxial tension and tensile creep behaviors of EPS 被引量:2
17
作者 康颖安 李显方 谭加才 《Journal of Central South University》 SCIE EI CAS 2008年第S1期202-205,共4页
The mechanical behavior of EPS(Expanded polystyrene) with three densities at room temperature and under tension loading was studied.The results show that EPS material is characterized by brittle behavior in the tensio... The mechanical behavior of EPS(Expanded polystyrene) with three densities at room temperature and under tension loading was studied.The results show that EPS material is characterized by brittle behavior in the tension tests,and tensile properties of EPS increase with the increase of density.Volume fraction has no a significant effect on the modulus of these foams.The tensile creep strain increases with stress for EPS with same density,indicating that the creep behavior is of the stress dependency.And the creep behavior of EPS exhibits density dependency,which the creep strain decreases with densities for a fixed stress value.Moreover the creep behavior under the constant tension load is well in coincidence with the three-parameter solid model. 展开更多
关键词 EPS mechanical behavior TENSILE creep DENSITY
下载PDF
CREEP BEHAVIOR OF ACASTγTiAl BASEALLOY
18
作者 W.M.Yin 1,2 , V.Lupinc 2, L.Z.Zhou 1, M. Maldini 2 and J.T.Guo 1 1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China 2 CNR TEMPE, Via Cozzi 53, Milan 20125, Italy 《中国有色金属学会会刊:英文版》 CSCD 1999年第S1期274-279,共6页
The creep behavior of the γ TiAl base alloy has been investigated in the stress range 125~490 MPa at temperatures from 650 to 800 ℃ in three materials having different silicon content. The improved creep resistance... The creep behavior of the γ TiAl base alloy has been investigated in the stress range 125~490 MPa at temperatures from 650 to 800 ℃ in three materials having different silicon content. The improved creep resistance in Si rich material is attributed to the interaction between silicide precipitates and dislocations. Nearly lamellar microstructure exhibits better creep resistance than duplex material. 展开更多
关键词 TIAL ALLOY CASTING creep behavior
下载PDF
CREEP BEHAVIOR OF AN EASY ORIENTED Ti-48Al PST CRYSTAL
19
作者 Lin Jianguo Zhou Yajian +1 位作者 Zhang Yonggang Chen Changqi(Department of Materials Science and Engineering)(Beijing University of Aeronautics and Austronautics,Beijing 100083) 《中国有色金属学会会刊:英文版》 CSCD 1996年第4期82-86,共5页
CREEPBEHAVIOROFANEASYORIENTEDTi-48AlPSTCRYSTAL¥LinJianguo;ZhouYajian;ZhangYonggang;ChenChangqi(DepartmentofM... CREEPBEHAVIOROFANEASYORIENTEDTi-48AlPSTCRYSTAL¥LinJianguo;ZhouYajian;ZhangYonggang;ChenChangqi(DepartmentofMaterialsSciencean... 展开更多
关键词 TIAL alloy PST CRYSTAL creep behavior
下载PDF
Theoretical Characterization of Indentation Depth-Dependent Creep Behavior of CoCrFeNiAl_(0.3) High-Entropy Alloy 被引量:1
20
作者 Lu Meng Weiling Cui +2 位作者 Buyun Su Xuefeng Shu Gesheng Xiao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第1期55-64,共10页
The effects of indentation loading depth and dynamic pre-compression on the creep behavior of CoCrFeNiAl_(0.3) high-entropy alloy(HEA)were studied through a series of indentation creep tests.Results show that the cree... The effects of indentation loading depth and dynamic pre-compression on the creep behavior of CoCrFeNiAl_(0.3) high-entropy alloy(HEA)were studied through a series of indentation creep tests.Results show that the creep displacement,creep stress exponent and creep strain rate are all sensitive to loading depth.A phenomenological model based on the holding time and loading depth was established by studying the characteristic relation between the loading depth and the creep displacement of CoCrFeNiAl_(0.3) HEA.The phenomenological model was used to analyze the creep behavior of the alloy under dynamic pre-compression(i.e.,dynamic compressive deformation caused by Hopkinson bar impact). 展开更多
关键词 High-entropy alloy creep behavior Phenomenological model Indentation depth-dependence Dynamic pre-compression
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部