The creep crack growth(CCG)and the time to carck initiation and rupture of specimen (t_(rc)and t_r)were measured by means of electrical potential method on single edge notched specimens at 700℃.The field near the cra...The creep crack growth(CCG)and the time to carck initiation and rupture of specimen (t_(rc)and t_r)were measured by means of electrical potential method on single edge notched specimens at 700℃.The field near the crack tip under steady-state creep was represented by energy rate integral(C~*),and the CCG rate as a function of C~* has been obtained.The agreement between the predicted and observed t_(rc)values is quite good.It was found that the addition of small amount of Mg and Zr in the alloys causes t_(rc)and t_r of the specimens to in- crease significantly.展开更多
The creep crack propagation in superalloy René80 of two different microstructures,i.e., equiaxed grain structure by conventional casting and columnar grain by directional solidification,was investigated under sta...The creep crack propagation in superalloy René80 of two different microstructures,i.e., equiaxed grain structure by conventional casting and columnar grain by directional solidification,was investigated under static load at 1123 K.The creep crack growth rate, da/dt,seems to be correlated with the stress intensity factor,K.The creep crack growth rate in the directionally solidified alloy is lower than that in the conventional cast alloy,owing to the elimination of transverse grain boundaries.The effect of microstructure on creep crack propagation has also been discussed.展开更多
Alloy 718 is a precipitation strengthened nickel-based superalloy based on the precipitation of γ″-Ni3Nb (DO22 structure) and γ′-Ni3(Al,Ti) (L12 structure) phases. Creep crack growth rate (CCGR) was investigated a...Alloy 718 is a precipitation strengthened nickel-based superalloy based on the precipitation of γ″-Ni3Nb (DO22 structure) and γ′-Ni3(Al,Ti) (L12 structure) phases. Creep crack growth rate (CCGR) was investigated after high temperature exposure at 593, 650 and 677℃ for 2000h in Alloy 718. In addition to the coalescence of γ′/ γ″ and the amount increasing of δ phase, the existence of a bcc chromium enriched α-Cr phase was observed by SEM, and the weight fraction of α-Cr and other phases were determined by chemical phase analysis methods. The CCGR behavior and regulation have been analyzed by means of strength and structure analysis approaches. The experimental results show higher the exposure temperature and longer the exposure time, lower the CCGR. This is probably attributed to the interaction of material softening and brittling due to complex structure changes during high temperature exposure. Therefore, despite α-Cr phase formation and amount enhancement were run in this test range. It seems to us a small amount of α-Cr will be not harmful for creep crack propagation resistance, which is critical for disk application in aircraft and land-based gas turbine.展开更多
An investigation was made on the creep crack growth behaviour under static load at 1023 K for Ni-base superalloy GH30 exposed to air and air+10% SO_2.The results showed that in the region of low stress intensity facto...An investigation was made on the creep crack growth behaviour under static load at 1023 K for Ni-base superalloy GH30 exposed to air and air+10% SO_2.The results showed that in the region of low stress intensity factor,the creep crack growth rate is higher in air+10% SO_2 than in air only,while in the high region,it is reverse.The fractograph of specimens has been analyzed,and the mechanism of creep crack growth together with the influences of sul- phur and oxygen has been discussed as well.展开更多
By controlling the carbon content of Fe-15Cr-25Ni alloys,three types of microstructures were obtained:single phase austenite (γ),γ+intergranular carbides, γ+intergranular carbides + intragranular carbides. Creep cr...By controlling the carbon content of Fe-15Cr-25Ni alloys,three types of microstructures were obtained:single phase austenite (γ),γ+intergranular carbides, γ+intergranular carbides + intragranular carbides. Creep crack growth behaviour of the three alloys has been compared at 973 K and 1123 K. Intergranular carbides show higher creep crack growth resistance than intragranular carbides.Cav- ities nucleate at the triple junctions of grain bound- aries for single phase alloy,but at intergranular carbides for two-phase alloys.The precipitation of intergranular carbide not only changes the nucleation mechanism of cavities,but also inhibits the growth and coalescence of cavities.The precipi- tation of intragranular carbide obstructs the nucleation and growth of cavities furthermore.展开更多
Creep crack growth behavior of Fe-Cr15-Ni25 alloys with different grain boundary features has been studied.Cavities nucleate at triple junctions of grain boundaries for the single phase alloy and at grain boundary car...Creep crack growth behavior of Fe-Cr15-Ni25 alloys with different grain boundary features has been studied.Cavities nucleate at triple junctions of grain boundaries for the single phase alloy and at grain boundary carbide for the alloy with grain boundary carbide.Grain bounda- ry carbide particles are obstacles to cavity growth and coalescence,and therefore increase the creep crack growth resistance greatly.展开更多
The influence of two different grain shapes and carbides in the HK40 alloy,the material for use of furnace tube,on the rate of creep crack growth has been investigated.The resistance to creep crack growth of the mater...The influence of two different grain shapes and carbides in the HK40 alloy,the material for use of furnace tube,on the rate of creep crack growth has been investigated.The resistance to creep crack growth of the material with columnar grains is inferior than that with equiaxial grains when the load line is perpendicular to the columnar grain axis.The influence of secon- dary carbide on the rate of creep crack propagation depends upon the Brain shape.展开更多
In this study, the creep crack growth (CCG) properties and fracture mechanism of a Cr-Mo-V steel at 566 C in compact tension (CT) specimens were investigated, and the CCG rate was predicted by using the NSW model....In this study, the creep crack growth (CCG) properties and fracture mechanism of a Cr-Mo-V steel at 566 C in compact tension (CT) specimens were investigated, and the CCG rate was predicted by using the NSW model. The results show that the CCG rate measured by CT specimens is much lower than that predicted by the NSW model under plane-strain state. This means that the NSW model prediction for the CCG rate of the steel is over-conservative. In addition, the CCG rate da/dt versus C measured by the experiments shows the piecewise linear relation on log-log scale instead of a single linear relation predicted by the NSW model. The main reasons for these results are that the actual creep fracture mechanism of the steel and the actual creep crack tip stress field in the CT specimens have not been fully captured in the NSW model. The experimental observation shows that the creep crack propagates in a discontinuous way (step by step) at meso-scale, and the cracks at micro-scale are usually formed by the growth and coalescence of voids on grain boundaries. The NSW model based on the creep ductility exhaustion approach may not correctly describe this creep fracture process. In addition, the opening stress and triaxial stress ahead of crack tips calculated by three-dimensional finite element method is lower than those predicted by the HRR stress field which is used in the NSW model under plane-strain state. The use of the high HRR stress field will cause high CCG rates. The change in the creep fracture mechanism at micro-scale in different ranges of C may cause the piecewise linear relation between the da/dt and C . Therefore, it is necessary to study the actual CCG mechanism in a wide range of C and the actual creep crack tip stress field to establish accurate CCG prediction models.展开更多
The superalloy GH2132 is equivalent to A286. The tests were carried out at 550°C under various cyclic frequencies (hold time) and load levels, and the fracture surfaces were examined by using a scanning electron ...The superalloy GH2132 is equivalent to A286. The tests were carried out at 550°C under various cyclic frequencies (hold time) and load levels, and the fracture surfaces were examined by using a scanning electron microscope. It was shown that the fracture mode of creep-fatigue and the effect of cyclic loading on crack growth change with the growth of crack and the increase of net-section stress, and both are reversed when the net-section stress is up to the yield stress of material. When σn0.2, cracking is predominantly cyclic-dependent transgranular and cyclic loading accelerates creep crack growth, whereas when σn>σ0.2, the case is reversed.展开更多
The effects of cyclic loading on crack growth, fracture feature and rupture life of superalloy GH2132 have been studied in the present paper. The crack growth tests were carried out at 550 on compact tension specimens...The effects of cyclic loading on crack growth, fracture feature and rupture life of superalloy GH2132 have been studied in the present paper. The crack growth tests were carried out at 550 on compact tension specimens under a wide range of load levels and various periods of hold time, and the fracture surfaces were examined on a scanning electron microscope. The results show that, for both static and cyclic creep, Stage-I of crack growth is related with initial test stress, during which the crack extension is about 0.5mm, and that the final effect of cyclic loading on rupture life depends on the counteraction of its two reversed effects on crack growth rate before and after the point n=0.2.展开更多
Most of the assessment equations for Ct which is a wellknown fracture parameter characterizing high temperature crack growth rates, have limited applicability to constant load conditions after sudden loading. However...Most of the assessment equations for Ct which is a wellknown fracture parameter characterizing high temperature crack growth rates, have limited applicability to constant load conditions after sudden loading. However, crack growth due to creep can also occur under load varying conditions when load rising time is so long that accumulated creep deformation near the crack tip is not negligible.In this paper, the estimation equation of the Ctparameter which can be applied to the case of slow load rising, i.e., (Ct)r, is explained. And the correlation between (Ct)r at the end of the load increasing period and Ct at the beginning of the succeeding load hold period is discussed. Finite element analyses of several cases with various loading conditions were performed and results were presented to show the effectiveness of the proposed Ct estimation scheme. The general applicability of the equation is also discussed.展开更多
A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and fr...A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip_crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power_hardening index n and the ratio of Young's module notably influence the crack_tip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack_tip field.展开更多
The mechanism and criterion of crack initiation and propagation of rocks were investigated by many researchers. And the creep behaviour of rocks was also theoretically and experimentally studied by some scientists and...The mechanism and criterion of crack initiation and propagation of rocks were investigated by many researchers. And the creep behaviour of rocks was also theoretically and experimentally studied by some scientists and engineers. The characteristics of crack initiation and propagation of rocks under creep condition, however, are very important for rock engineering and still not paid enough attention by researchers. In this paper, the criterion and mechanism of crack initiation and propagation under creep condition were investigated using specimens collected from sandstone rock formations outcropping in the Emei Mountain, the Sichuan Province of China. Cuboid specimens under three point bending were used in this investigation. All specimens were classified into four sorts and used for Mode I fracture or creep fracture tests. The experimental result shows that due to creep deformation, rock crack will inevitably initiate and propagate under a load of K I , which is less than fracture toughness K IC but not less than a constant (marked as K IC2 ). K IC2 indicates the ability of rock to resist crack initiation and propagation under creep conditions and is less than fracture toughness K IC , defined as creep fracture toughness in this paper. K IC2 should be considered as an important parameter on design and computation of rock engineering. The microstructural mechanism for crack initiation and propagation of rock materials under creep condition was introduced based on competitive model between softening effect and hardening effect, and the validity of test result was explained. The test result was also verified in rheological theory. When K I is more than K IC2 but less than K IC , rock crack will initiate and propagate after a time interval of sustained loading under creep condition. In order to find the relation between duration of sustained loading, which can lead to crack initiation and propagation, and the initial stress intensity factor K I , an unequal interval time sequence forecasting and predicting model was introduced, and the relation was obtained for homogeneous and isotropic fine grained red sandstone. Finally a modified fracture toughness formula was given, in which the influence of fracture process zone(FPZ) was fully considered.展开更多
nfluence of hot corrosion on the creep rupture behavior for both single crystal Ni-based superalloy DD3and specimens coated with Pt-Al was studied. In mixed salt, Pt-Al coating can improve creep properties of thealloy...nfluence of hot corrosion on the creep rupture behavior for both single crystal Ni-based superalloy DD3and specimens coated with Pt-Al was studied. In mixed salt, Pt-Al coating can improve creep properties of thealloy. The low melting point eutectic products lead to premature failure of alloy. This article proposes a newfracture model to explain the creep fracture behavior of DD3 at elevated temperature.展开更多
文摘The creep crack growth(CCG)and the time to carck initiation and rupture of specimen (t_(rc)and t_r)were measured by means of electrical potential method on single edge notched specimens at 700℃.The field near the crack tip under steady-state creep was represented by energy rate integral(C~*),and the CCG rate as a function of C~* has been obtained.The agreement between the predicted and observed t_(rc)values is quite good.It was found that the addition of small amount of Mg and Zr in the alloys causes t_(rc)and t_r of the specimens to in- crease significantly.
文摘The creep crack propagation in superalloy René80 of two different microstructures,i.e., equiaxed grain structure by conventional casting and columnar grain by directional solidification,was investigated under static load at 1123 K.The creep crack growth rate, da/dt,seems to be correlated with the stress intensity factor,K.The creep crack growth rate in the directionally solidified alloy is lower than that in the conventional cast alloy,owing to the elimination of transverse grain boundaries.The effect of microstructure on creep crack propagation has also been discussed.
基金The authors thank Ladish Co.,Inc.to support the test samples for this analysis.And this work was supported by the National Natural Science Foundation of China(No.50171005)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE to support it.
文摘Alloy 718 is a precipitation strengthened nickel-based superalloy based on the precipitation of γ″-Ni3Nb (DO22 structure) and γ′-Ni3(Al,Ti) (L12 structure) phases. Creep crack growth rate (CCGR) was investigated after high temperature exposure at 593, 650 and 677℃ for 2000h in Alloy 718. In addition to the coalescence of γ′/ γ″ and the amount increasing of δ phase, the existence of a bcc chromium enriched α-Cr phase was observed by SEM, and the weight fraction of α-Cr and other phases were determined by chemical phase analysis methods. The CCGR behavior and regulation have been analyzed by means of strength and structure analysis approaches. The experimental results show higher the exposure temperature and longer the exposure time, lower the CCGR. This is probably attributed to the interaction of material softening and brittling due to complex structure changes during high temperature exposure. Therefore, despite α-Cr phase formation and amount enhancement were run in this test range. It seems to us a small amount of α-Cr will be not harmful for creep crack propagation resistance, which is critical for disk application in aircraft and land-based gas turbine.
文摘An investigation was made on the creep crack growth behaviour under static load at 1023 K for Ni-base superalloy GH30 exposed to air and air+10% SO_2.The results showed that in the region of low stress intensity factor,the creep crack growth rate is higher in air+10% SO_2 than in air only,while in the high region,it is reverse.The fractograph of specimens has been analyzed,and the mechanism of creep crack growth together with the influences of sul- phur and oxygen has been discussed as well.
文摘By controlling the carbon content of Fe-15Cr-25Ni alloys,three types of microstructures were obtained:single phase austenite (γ),γ+intergranular carbides, γ+intergranular carbides + intragranular carbides. Creep crack growth behaviour of the three alloys has been compared at 973 K and 1123 K. Intergranular carbides show higher creep crack growth resistance than intragranular carbides.Cav- ities nucleate at the triple junctions of grain bound- aries for single phase alloy,but at intergranular carbides for two-phase alloys.The precipitation of intergranular carbide not only changes the nucleation mechanism of cavities,but also inhibits the growth and coalescence of cavities.The precipi- tation of intragranular carbide obstructs the nucleation and growth of cavities furthermore.
文摘Creep crack growth behavior of Fe-Cr15-Ni25 alloys with different grain boundary features has been studied.Cavities nucleate at triple junctions of grain boundaries for the single phase alloy and at grain boundary carbide for the alloy with grain boundary carbide.Grain bounda- ry carbide particles are obstacles to cavity growth and coalescence,and therefore increase the creep crack growth resistance greatly.
文摘The influence of two different grain shapes and carbides in the HK40 alloy,the material for use of furnace tube,on the rate of creep crack growth has been investigated.The resistance to creep crack growth of the material with columnar grains is inferior than that with equiaxial grains when the load line is perpendicular to the columnar grain axis.The influence of secon- dary carbide on the rate of creep crack propagation depends upon the Brain shape.
基金supported by the National Natural Science Foundation of China (Nos.50835003, 51075149 and 10772067)the National High Technology Re- search and Development Program of China (Nos.2009AA04Z409 and 2009AA044803)the Doctoral Fund of Ministry of Education of China (No.200802510003)
文摘In this study, the creep crack growth (CCG) properties and fracture mechanism of a Cr-Mo-V steel at 566 C in compact tension (CT) specimens were investigated, and the CCG rate was predicted by using the NSW model. The results show that the CCG rate measured by CT specimens is much lower than that predicted by the NSW model under plane-strain state. This means that the NSW model prediction for the CCG rate of the steel is over-conservative. In addition, the CCG rate da/dt versus C measured by the experiments shows the piecewise linear relation on log-log scale instead of a single linear relation predicted by the NSW model. The main reasons for these results are that the actual creep fracture mechanism of the steel and the actual creep crack tip stress field in the CT specimens have not been fully captured in the NSW model. The experimental observation shows that the creep crack propagates in a discontinuous way (step by step) at meso-scale, and the cracks at micro-scale are usually formed by the growth and coalescence of voids on grain boundaries. The NSW model based on the creep ductility exhaustion approach may not correctly describe this creep fracture process. In addition, the opening stress and triaxial stress ahead of crack tips calculated by three-dimensional finite element method is lower than those predicted by the HRR stress field which is used in the NSW model under plane-strain state. The use of the high HRR stress field will cause high CCG rates. The change in the creep fracture mechanism at micro-scale in different ranges of C may cause the piecewise linear relation between the da/dt and C . Therefore, it is necessary to study the actual CCG mechanism in a wide range of C and the actual creep crack tip stress field to establish accurate CCG prediction models.
文摘The superalloy GH2132 is equivalent to A286. The tests were carried out at 550°C under various cyclic frequencies (hold time) and load levels, and the fracture surfaces were examined by using a scanning electron microscope. It was shown that the fracture mode of creep-fatigue and the effect of cyclic loading on crack growth change with the growth of crack and the increase of net-section stress, and both are reversed when the net-section stress is up to the yield stress of material. When σn0.2, cracking is predominantly cyclic-dependent transgranular and cyclic loading accelerates creep crack growth, whereas when σn>σ0.2, the case is reversed.
文摘The effects of cyclic loading on crack growth, fracture feature and rupture life of superalloy GH2132 have been studied in the present paper. The crack growth tests were carried out at 550 on compact tension specimens under a wide range of load levels and various periods of hold time, and the fracture surfaces were examined on a scanning electron microscope. The results show that, for both static and cyclic creep, Stage-I of crack growth is related with initial test stress, during which the crack extension is about 0.5mm, and that the final effect of cyclic loading on rupture life depends on the counteraction of its two reversed effects on crack growth rate before and after the point n=0.2.
文摘Most of the assessment equations for Ct which is a wellknown fracture parameter characterizing high temperature crack growth rates, have limited applicability to constant load conditions after sudden loading. However, crack growth due to creep can also occur under load varying conditions when load rising time is so long that accumulated creep deformation near the crack tip is not negligible.In this paper, the estimation equation of the Ctparameter which can be applied to the case of slow load rising, i.e., (Ct)r, is explained. And the correlation between (Ct)r at the end of the load increasing period and Ct at the beginning of the succeeding load hold period is discussed. Finite element analyses of several cases with various loading conditions were performed and results were presented to show the effectiveness of the proposed Ct estimation scheme. The general applicability of the equation is also discussed.
基金theNaturalScienceFoundationofHeilongjiangProvince China (A0 0 9)
文摘A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip_crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power_hardening index n and the ratio of Young's module notably influence the crack_tip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack_tip field.
文摘The mechanism and criterion of crack initiation and propagation of rocks were investigated by many researchers. And the creep behaviour of rocks was also theoretically and experimentally studied by some scientists and engineers. The characteristics of crack initiation and propagation of rocks under creep condition, however, are very important for rock engineering and still not paid enough attention by researchers. In this paper, the criterion and mechanism of crack initiation and propagation under creep condition were investigated using specimens collected from sandstone rock formations outcropping in the Emei Mountain, the Sichuan Province of China. Cuboid specimens under three point bending were used in this investigation. All specimens were classified into four sorts and used for Mode I fracture or creep fracture tests. The experimental result shows that due to creep deformation, rock crack will inevitably initiate and propagate under a load of K I , which is less than fracture toughness K IC but not less than a constant (marked as K IC2 ). K IC2 indicates the ability of rock to resist crack initiation and propagation under creep conditions and is less than fracture toughness K IC , defined as creep fracture toughness in this paper. K IC2 should be considered as an important parameter on design and computation of rock engineering. The microstructural mechanism for crack initiation and propagation of rock materials under creep condition was introduced based on competitive model between softening effect and hardening effect, and the validity of test result was explained. The test result was also verified in rheological theory. When K I is more than K IC2 but less than K IC , rock crack will initiate and propagate after a time interval of sustained loading under creep condition. In order to find the relation between duration of sustained loading, which can lead to crack initiation and propagation, and the initial stress intensity factor K I , an unequal interval time sequence forecasting and predicting model was introduced, and the relation was obtained for homogeneous and isotropic fine grained red sandstone. Finally a modified fracture toughness formula was given, in which the influence of fracture process zone(FPZ) was fully considered.
文摘nfluence of hot corrosion on the creep rupture behavior for both single crystal Ni-based superalloy DD3and specimens coated with Pt-Al was studied. In mixed salt, Pt-Al coating can improve creep properties of thealloy. The low melting point eutectic products lead to premature failure of alloy. This article proposes a newfracture model to explain the creep fracture behavior of DD3 at elevated temperature.