The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and enginee...The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering. A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work. Failure by creep for polymeric material is an important problem to be addressed in the engineering. A universal equation on reduced extensional failure creep compliance for PMMA has been derived. It is successful in relating the reduced extensional failure creep compliance with aging time, temperature, levels of stress, the average growth dimensional number and the parameter in K-W-W function. Based on the universal equation, a method for the prediction of failure behavior, failure strain criterion, failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach". The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments, and the proposed method is reliable and practical. The dependences of reduced extensional failure creep compliance on the conditions of aging time, failure creep stress, the structure of fluidized-domain constituent chains are discussed. The shifting factor, exponent for time-stress superposition at different levels of stress and the shifting factor, exponent for time-time aging superposition at different aging time are theoretically defined respectively.展开更多
Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperatu...Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperature,using a servo-controlled rheology testing machine.Given our short-term experimental test results,we confirmed deviatoric creep stress levels of sandstone.Multiple deviatoric stress levels were applied in steps to each sample.Each deviatoric stress level before the final failed deviatoric stress was maintained for 48 h or longer.Time-dependent variations of axial strains of sandstone samples are discussed and evaluated.During the creep tests,complete tertiary creep curves of sandstone were observed under failed deviatoric stress levels with different confining pressures.Slices of coal in sandstone samples can lead to distinct tertiary creep deformation failure.展开更多
In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation proce...In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation procedure of creep law parameters are briefly introduced.Besides,a modified shear test is applied to determine the cohesion and friction angle of refractories under shear state. A RH snorkel equipped with magnesia- chromite bricks is chosen for a case study of thermomechanical simulation applying the classical creep model and Drucker-Prager creep model available in the finite element code ABAQUS,respectively. Afterwards,thermal stresses and joint opening of magnesia- chromite bricks during a process cycle are compared to distinguish the impact of these two creep models.展开更多
Polypropylene(PP) exhibits suboptimal creep resistance due to the presence of methyl groups on its main chain, leading to irregular chain segment distribution, diminished inter-chain interaction, and crystallinity. Th...Polypropylene(PP) exhibits suboptimal creep resistance due to the presence of methyl groups on its main chain, leading to irregular chain segment distribution, diminished inter-chain interaction, and crystallinity. This structural feature causes chain slippage in PP under stress,significantly constraining its service lifetime. In this study, thermally reduced graphene oxide(TrGO) nanosheets were incorporated into the PP matrix, yielding a nanocomposite with exceptional creep resistance performance. Results demonstrated that at a stress of 25 MPa, a 2.0 wt% TrGO content could enhance the creep failure lifetime of PP by 21.5 times compared to neat PP. Rheology, transmission electron microscopy(TEM),and scanning electron microscopy(SEM) characterization techniques were employed to analyze the mechanism of TrGO's influence on PP's creep behavior. It was observed that when TrGO content exceeded 1.0 wt%, an effective particle network structure formed within the PP matrix. This homogeneously dispersed TrGO-formed particle network structure restricted the migration and rearrangement of PP molecular chains, enabling prolonged stress resistance without structural failure. By combining the time-strain superposition method with the critical failure strain as a criterion, generalized creep compliance curves for PP and its composites were established, facilitating the prediction of material creep failure lifetimes, with a strong agreement between experimental and predicted lifetime values. This research proposes a novel strategy aimed at developing polypropylene materials and products with enhanced long-term stability and durability, thus extending service life, reducing failure risk, and broadening their potential across various application domains.展开更多
Materials in engineering applications are rarely uniaxially-loaded.In reality,failures under multiaxial loading has been widely observed in engineering structures.The life prediction of a component under multiaxial st...Materials in engineering applications are rarely uniaxially-loaded.In reality,failures under multiaxial loading has been widely observed in engineering structures.The life prediction of a component under multiaxial stresses has long been a challenging issue,particularly for high temperature applications.To distinguish the mode of failure ranging from a maximum principal stress intergranular damage to von Mises effective stress rupture mode a multiaxial stress rupture criterion(MSRC)was originally proposed by Sdobyrev and then Hayhurst and Leckie(SHL MSRC).A multiaxial-factor,α,was developed as a result which was intended to be a material constant and differentiates the bias of the MSRC between maxi-mum principal stress and effective stress.The success of the SHL MSRC relies on accurately calibrating the value ofαto quantify the multiaxial response of the material/geometry combination.To find a more suitable approach for determining MSRC,the applicability of different methods are evaluated.Given that the resulting analysis of the various approaches can be affected by the creep failure mechanism,princi-ples in the determination of MSRC with and without using continuum damage mechanics approaches are recommended.The viability of uniaxial material parameters in correlating withαthrough the analysis of available data in literature is also presented.It is found that the increase of the uniaxial creep dam-age tolerance parameterλis accompanied bythe decreaseof theα-value,whichimplies thatthe creep ductility plays an important role in affecting the multiaxial rupture behavior of materials.展开更多
文摘The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering. A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work. Failure by creep for polymeric material is an important problem to be addressed in the engineering. A universal equation on reduced extensional failure creep compliance for PMMA has been derived. It is successful in relating the reduced extensional failure creep compliance with aging time, temperature, levels of stress, the average growth dimensional number and the parameter in K-W-W function. Based on the universal equation, a method for the prediction of failure behavior, failure strain criterion, failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach". The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments, and the proposed method is reliable and practical. The dependences of reduced extensional failure creep compliance on the conditions of aging time, failure creep stress, the structure of fluidized-domain constituent chains are discussed. The shifting factor, exponent for time-stress superposition at different levels of stress and the shifting factor, exponent for time-time aging superposition at different aging time are theoretically defined respectively.
基金Projects 50709008 and 50539110 are supported by the National Natural Science Foundation of China.
文摘Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperature,using a servo-controlled rheology testing machine.Given our short-term experimental test results,we confirmed deviatoric creep stress levels of sandstone.Multiple deviatoric stress levels were applied in steps to each sample.Each deviatoric stress level before the final failed deviatoric stress was maintained for 48 h or longer.Time-dependent variations of axial strains of sandstone samples are discussed and evaluated.During the creep tests,complete tertiary creep curves of sandstone were observed under failed deviatoric stress levels with different confining pressures.Slices of coal in sandstone samples can lead to distinct tertiary creep deformation failure.
基金supported by the Austrian competence centre programme COMET ( Competence Center for Excellent Technologies) with funds from the Federal Ministry for Transport,Innovation and Technology,the Federal Ministry of Economy,the provinces of Upper Austria and Styria,the Styrian Business Promotion Agency,and the Tyrolian Future Foundation
文摘In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation procedure of creep law parameters are briefly introduced.Besides,a modified shear test is applied to determine the cohesion and friction angle of refractories under shear state. A RH snorkel equipped with magnesia- chromite bricks is chosen for a case study of thermomechanical simulation applying the classical creep model and Drucker-Prager creep model available in the finite element code ABAQUS,respectively. Afterwards,thermal stresses and joint opening of magnesia- chromite bricks during a process cycle are compared to distinguish the impact of these two creep models.
基金financially supported by Natural Science Foundation of Sichuan Province (No. 2022NSFSC0296)the National Natural Science Foundation of China (Nos. 51903118and U19A2096)State Key Laboratory of Polymer Materials Engineering (No. sklpme2020-1-07, Sichuan University)。
文摘Polypropylene(PP) exhibits suboptimal creep resistance due to the presence of methyl groups on its main chain, leading to irregular chain segment distribution, diminished inter-chain interaction, and crystallinity. This structural feature causes chain slippage in PP under stress,significantly constraining its service lifetime. In this study, thermally reduced graphene oxide(TrGO) nanosheets were incorporated into the PP matrix, yielding a nanocomposite with exceptional creep resistance performance. Results demonstrated that at a stress of 25 MPa, a 2.0 wt% TrGO content could enhance the creep failure lifetime of PP by 21.5 times compared to neat PP. Rheology, transmission electron microscopy(TEM),and scanning electron microscopy(SEM) characterization techniques were employed to analyze the mechanism of TrGO's influence on PP's creep behavior. It was observed that when TrGO content exceeded 1.0 wt%, an effective particle network structure formed within the PP matrix. This homogeneously dispersed TrGO-formed particle network structure restricted the migration and rearrangement of PP molecular chains, enabling prolonged stress resistance without structural failure. By combining the time-strain superposition method with the critical failure strain as a criterion, generalized creep compliance curves for PP and its composites were established, facilitating the prediction of material creep failure lifetimes, with a strong agreement between experimental and predicted lifetime values. This research proposes a novel strategy aimed at developing polypropylene materials and products with enhanced long-term stability and durability, thus extending service life, reducing failure risk, and broadening their potential across various application domains.
基金This work was financially supported by Projects of the National Natural Science Foundation of China(Nos.521130511,11502082,52075174)the Higher Education Discipline Innovation Project("111 Project")(No.B13020).Helpful discussions with Jian-Feng Wen and Guo-Zhen Wang at the East China University of Science and Technology and Qiang Xu at the University of Huddersfield are gratefully acknowledged.
文摘Materials in engineering applications are rarely uniaxially-loaded.In reality,failures under multiaxial loading has been widely observed in engineering structures.The life prediction of a component under multiaxial stresses has long been a challenging issue,particularly for high temperature applications.To distinguish the mode of failure ranging from a maximum principal stress intergranular damage to von Mises effective stress rupture mode a multiaxial stress rupture criterion(MSRC)was originally proposed by Sdobyrev and then Hayhurst and Leckie(SHL MSRC).A multiaxial-factor,α,was developed as a result which was intended to be a material constant and differentiates the bias of the MSRC between maxi-mum principal stress and effective stress.The success of the SHL MSRC relies on accurately calibrating the value ofαto quantify the multiaxial response of the material/geometry combination.To find a more suitable approach for determining MSRC,the applicability of different methods are evaluated.Given that the resulting analysis of the various approaches can be affected by the creep failure mechanism,princi-ples in the determination of MSRC with and without using continuum damage mechanics approaches are recommended.The viability of uniaxial material parameters in correlating withαthrough the analysis of available data in literature is also presented.It is found that the increase of the uniaxial creep dam-age tolerance parameterλis accompanied bythe decreaseof theα-value,whichimplies thatthe creep ductility plays an important role in affecting the multiaxial rupture behavior of materials.