The grain boundary(GB)damage of long-term crept HR3C(25Cr–20Ni–Nb–N)austenitic steel with solid solution state was investigated by nanoindentation test accompanied with in-situ electron back-scattered diffraction.T...The grain boundary(GB)damage of long-term crept HR3C(25Cr–20Ni–Nb–N)austenitic steel with solid solution state was investigated by nanoindentation test accompanied with in-situ electron back-scattered diffraction.The corresponding microstructure was characterized by scanning electron microscopy and transmission electron microscopy.Results show that the increase in nanoindentation hardness at the GBs and triple grain junctions may be related to the dislocation accumulation and carbide growth during the creep.Coarsened M23C6 and dislocations piling-up at the GB accelerate the nucleation and coalescence of creep cavity along the GB.The nanoindentation hardness in grains varies with orientation of the stress axis.The orientation difference of neighbor grains may induce local high geometrically necessary dislocation densities and strain gradients near the GB,consequently causing stress concentration and subsequent crack growth at specific GBs.展开更多
The microstructural evolution of casting porosities and creep-induced cavities for a damaged nickel-based superalloy under different hot isostatic pressing (HIP) conditions was investigated in order to understand th...The microstructural evolution of casting porosities and creep-induced cavities for a damaged nickel-based superalloy under different hot isostatic pressing (HIP) conditions was investigated in order to understand the effects of HIP parameters on the healing behavior of micropores. A number of small-sized creep cavities formed during long-term service and large-sized porosities formed during the casting process were observed. These microdefects were partially healed after treated at high temperature of 1100 ℃ combined with 150 MPa pressure for 2 h, together with the formation of the so- called concentrically oriented γ rafting structure. When HIP temperature was increased to 1150 and 1175 ℃, both the amount and the size of the microdefects were decreased. The concentrically oriented γ rafting around creep cavities became more remarkable, and the primary γ denuded zone was also formed between the raft structure and the cavity. Energy-dispersive X-ray spectroscopy analysis revealed that the γ matrix solute atoms diffused toward the cavity under the concentration gradient, whereas the γ-forming elements diffused in a negative direction. When increasing HIP temperature up to 1200 ℃, the micropores were hardly observed, indicating that both casting porosities and creep-induced cavities had almost been healed. Meanwhile, theγ rafting structure disappeared since HIP temperature was beyond theγ solvus temperature. It is revealed by the experimental results that the atomic diffusion could mainly dominate the healing process of micropores.展开更多
基金grateful for the financial support from the National Natural Science Foundation of China(51904156,51971163 and 51705082)the Open Fund of Jiangsu Wind Power Engineering Technology Center(ZK22-03-02)the Ten thousand talents project of Zhejiang Province(2019R52056).
文摘The grain boundary(GB)damage of long-term crept HR3C(25Cr–20Ni–Nb–N)austenitic steel with solid solution state was investigated by nanoindentation test accompanied with in-situ electron back-scattered diffraction.The corresponding microstructure was characterized by scanning electron microscopy and transmission electron microscopy.Results show that the increase in nanoindentation hardness at the GBs and triple grain junctions may be related to the dislocation accumulation and carbide growth during the creep.Coarsened M23C6 and dislocations piling-up at the GB accelerate the nucleation and coalescence of creep cavity along the GB.The nanoindentation hardness in grains varies with orientation of the stress axis.The orientation difference of neighbor grains may induce local high geometrically necessary dislocation densities and strain gradients near the GB,consequently causing stress concentration and subsequent crack growth at specific GBs.
基金financially supported by the University–Industry cooperation project sponsored by Aviation Industry Corporation of China(No.cxy2010BH06)the National Natural Science Foundation of China(No.51301001)
文摘The microstructural evolution of casting porosities and creep-induced cavities for a damaged nickel-based superalloy under different hot isostatic pressing (HIP) conditions was investigated in order to understand the effects of HIP parameters on the healing behavior of micropores. A number of small-sized creep cavities formed during long-term service and large-sized porosities formed during the casting process were observed. These microdefects were partially healed after treated at high temperature of 1100 ℃ combined with 150 MPa pressure for 2 h, together with the formation of the so- called concentrically oriented γ rafting structure. When HIP temperature was increased to 1150 and 1175 ℃, both the amount and the size of the microdefects were decreased. The concentrically oriented γ rafting around creep cavities became more remarkable, and the primary γ denuded zone was also formed between the raft structure and the cavity. Energy-dispersive X-ray spectroscopy analysis revealed that the γ matrix solute atoms diffused toward the cavity under the concentration gradient, whereas the γ-forming elements diffused in a negative direction. When increasing HIP temperature up to 1200 ℃, the micropores were hardly observed, indicating that both casting porosities and creep-induced cavities had almost been healed. Meanwhile, theγ rafting structure disappeared since HIP temperature was beyond theγ solvus temperature. It is revealed by the experimental results that the atomic diffusion could mainly dominate the healing process of micropores.