To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character...To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.展开更多
The room temperature mechanical properties and high temperature creep behavior of AZ91 alloy reinforced with SiC_(p) synthesized via stir casting have been evaluated.The mechanical properties showed improvement with r...The room temperature mechanical properties and high temperature creep behavior of AZ91 alloy reinforced with SiC_(p) synthesized via stir casting have been evaluated.The mechanical properties showed improvement with respect to the amount of reinforcement content.The creep testing of the composites carried out at a temperature of 175 ℃ under constant stress of 80,100 and 120 MPa reveals different creep characteristics depending upon the reinforcement content and the applied load.The true stress exponents of different composites calculated from minimum creep rate indicate the possible mechanisms of creep deformation.展开更多
By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the ef...By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld.展开更多
The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecew...The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecewise homogeneous body model by utilizing the exact equations of linear viscoelasto-dynamics.The corresponding dispersion equation is derived for an arbitrary type of hereditary operator and the algorithm is developed for its numerical solution.Concrete numerical results are obtained for the case where the relations of the constituents of the cylinder are described through fractional exponential operators.The influence of the viscosity of the materials of the compound cylinder on the wave dispersion is studied through the rheological parameters which indicate the characteristic creep time and long-term values of the elastic constants of these materials.Dispersion curves are presented for certain selected dispersive and non-dispersive attenuation cases under various values of the problem parameters and the influence of the aforementioned rheological parameters on these curves is discussed.As a result of the numerical investigations,in particular,it is established that in the case where the rheological parameters of the components of the compound cylinder are the same,the viscosity of the layers’materials causes the axisymmetric wave propagation velocity to decrease.展开更多
Due to creep characteristics of wood,long-term loading can cause a significant stress loss of steel bars in rein-forced glulam beams and high long-term deflection of the beam midspan.In this study,15 glulam beams were...Due to creep characteristics of wood,long-term loading can cause a significant stress loss of steel bars in rein-forced glulam beams and high long-term deflection of the beam midspan.In this study,15 glulam beams were subjected to a 90-day long-term loading test,and the effects of long-term loading value,reinforcement ratio and prestress level on the stress of steel bars,midspan long-term deflection,and other parameters were compared and analyzed.The main conclusions drawn from this study were that the long-term deflection of the reinforced glulam beams accounted for 22.5%,20.6%,and 18.2%of the total deflection respectively when the loading value was 20%,30%,and 40%of the estimated ultimate load under the long-term loading.The higher the loading level was,the smaller the proportion of the long-term deflection in the total deflection was.Compared with ordinary glulam beams,the long-term deflection of the reinforced glulam beam was even smaller.Under the condition of the constant loading level,the total stress value of the steel bars decreased by 17.5%,13.6%,and 9.1%,and the proportion of the long-term deflection of the beam midspan in the total deflection was 26.9%,24.2%,and 20.6%respectively when the reinforcement ratio was 2.05%,2.68%,and 3.39%.With the increase of the reinfor-cement ratio,the stress loss of the steel bars decreased,and the proportion of the long-term deflection decreased as well.When other conditions remained constant and the prestress level of the steel bars was 0 MPa,30 MPa,and 60 MPa,the total stress value of the steel bars decreased by 9.1%,9.4%,and 10.2%,respectively,and the propor-tion of the long-term deflection in the total deflection was 20.6%,26.1%,and 64.9%,respectively.With the increase of the prestress value,the stress loss of the steel bars increased,and the proportion of the long-term deflection increased as well.展开更多
The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation res...The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation resistance and rheological properties of asphalt samples at low temperatures were evaluated,respectively.Based on the result of BBR test,the creep functions of the Burgers model and the Zener model were used to fit the low-temperature creep characteristics of the asphalt samples.Furthermore,the differential scanning calorimetry(DSC)test and the attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR)test were utilized to appraise the low-temperature stability and chemical properties of asphalt samples,respectively.The results showed that CR significantly improved the low-temperature properties of virgin asphalt,while CNTs had little effect.Moreover,during the degradation of CR,aromatic and aliphatic components were released.In particular,the aliphatic components of CR-modified asphalt were much higher than those of virgin asphalt,which had a significant effect on improving the low-temperature properties of the asphalt.The DSC test results showed that CR enhanced the low-temperature stability of the asphalt,while the addition of CNTs presented a slightly negative effect.展开更多
In view of the unclear understanding of the basic scientific problems such as the rheological mechanism of seed cotton,especially the lack of research on the creep characteristics of seed cotton,the machine-harvested ...In view of the unclear understanding of the basic scientific problems such as the rheological mechanism of seed cotton,especially the lack of research on the creep characteristics of seed cotton,the machine-harvested seed cotton in the Xinjiang region was taken as the research object to find out the compression creep characteristics.The universal material testing machine was used to carry out a one-factor creep test,taking moisture content,feed quality,compression times,and trash content as test factors and instantaneous elastic modulus,hysteretic elastic modulus,viscosity coefficient,and delay time as test indicators.The ANOVA and correlation were analyzed by SPSS,and the creep process of the seed cotton was simulated by ADAMS.Results show that moisture content significantly affects the instantaneous elastic modulus,hysteretic elastic modulus,and viscosity coefficient(p<0.01).In addition,each value of which decreases with the increase in moisture content.Feed quality significantly affects the hysteretic elastic modulus and viscosity coefficient(p<0.05).Moreover,the hysteretic elastic modulus and viscosity coefficient increase with the increase in feed quality.The compression times significantly influence the instantaneous elastic modulus,hysteretic elastic modulus,and viscosity coefficient(p<0.01),each value of which increases with the increase of compression times.Furthermore,the trash content significantly influenced the hysteretic elastic modulus and viscosity coefficient(p<0.05).The absolute error between the simulated and experimental values ek is within−0.011-0.030 mm,and the relative errorφk is less than 7%.The experimental results can provide theoretical and data support for the study of rheological characteristics of machine-harvested seed cotton,the design of seed cotton packing devices,and the molding quality of cotton bale(mold).展开更多
基金financial support from the National Natural Science Foundation of China(41902272)Gansu Province Basic Research Innovation Group Project(21JR7RA347).
文摘To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.
基金The authors are grateful to the Aeronautical Research and Development Board(ARDB)New Delhi for the financial grant for this work(GAP 214739).Mr.Prasanth Sujayakumar has been very helpful throughout the course of the work.
文摘The room temperature mechanical properties and high temperature creep behavior of AZ91 alloy reinforced with SiC_(p) synthesized via stir casting have been evaluated.The mechanical properties showed improvement with respect to the amount of reinforcement content.The creep testing of the composites carried out at a temperature of 175 ℃ under constant stress of 80,100 and 120 MPa reveals different creep characteristics depending upon the reinforcement content and the applied load.The true stress exponents of different composites calculated from minimum creep rate indicate the possible mechanisms of creep deformation.
基金Funded by the National Natural Science Foundation of China(41372289)the Shandong Province Higher Educational Science and Technology Program(12LH03)+1 种基金the China's Post-doctoral Science Fund(2012M521365)the SDUST Research Fund
文摘By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld.
文摘The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecewise homogeneous body model by utilizing the exact equations of linear viscoelasto-dynamics.The corresponding dispersion equation is derived for an arbitrary type of hereditary operator and the algorithm is developed for its numerical solution.Concrete numerical results are obtained for the case where the relations of the constituents of the cylinder are described through fractional exponential operators.The influence of the viscosity of the materials of the compound cylinder on the wave dispersion is studied through the rheological parameters which indicate the characteristic creep time and long-term values of the elastic constants of these materials.Dispersion curves are presented for certain selected dispersive and non-dispersive attenuation cases under various values of the problem parameters and the influence of the aforementioned rheological parameters on these curves is discussed.As a result of the numerical investigations,in particular,it is established that in the case where the rheological parameters of the components of the compound cylinder are the same,the viscosity of the layers’materials causes the axisymmetric wave propagation velocity to decrease.
基金This research work was supported by the Fundamental Research Funds for the Central Universities(2572017DB02)the natural science foundation of Heilongjiang Province(LH2019E005)the natural science of Heilongjiang Province(LH2020E009).
文摘Due to creep characteristics of wood,long-term loading can cause a significant stress loss of steel bars in rein-forced glulam beams and high long-term deflection of the beam midspan.In this study,15 glulam beams were subjected to a 90-day long-term loading test,and the effects of long-term loading value,reinforcement ratio and prestress level on the stress of steel bars,midspan long-term deflection,and other parameters were compared and analyzed.The main conclusions drawn from this study were that the long-term deflection of the reinforced glulam beams accounted for 22.5%,20.6%,and 18.2%of the total deflection respectively when the loading value was 20%,30%,and 40%of the estimated ultimate load under the long-term loading.The higher the loading level was,the smaller the proportion of the long-term deflection in the total deflection was.Compared with ordinary glulam beams,the long-term deflection of the reinforced glulam beam was even smaller.Under the condition of the constant loading level,the total stress value of the steel bars decreased by 17.5%,13.6%,and 9.1%,and the proportion of the long-term deflection of the beam midspan in the total deflection was 26.9%,24.2%,and 20.6%respectively when the reinforcement ratio was 2.05%,2.68%,and 3.39%.With the increase of the reinfor-cement ratio,the stress loss of the steel bars decreased,and the proportion of the long-term deflection decreased as well.When other conditions remained constant and the prestress level of the steel bars was 0 MPa,30 MPa,and 60 MPa,the total stress value of the steel bars decreased by 9.1%,9.4%,and 10.2%,respectively,and the propor-tion of the long-term deflection in the total deflection was 20.6%,26.1%,and 64.9%,respectively.With the increase of the prestress value,the stress loss of the steel bars increased,and the proportion of the long-term deflection increased as well.
基金the support from the National Natural Science Foundation of China (Grant No.52078051)the Technology Innovation Project of Department of Industry and Information Technology of Shandong Province (Grant No.Lugongxinji (2020) 8)+2 种基金the Transportation Department of Shandong Province (Grant No.Lujiaokeji (2017) 28)the Traffic Science and Technology Project of Xixian New District Management Committee of Shaanxi Province (2017 44)the Zhuhai Transportation Group Co.Ltd.(JT-HG-2020-21)
文摘The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation resistance and rheological properties of asphalt samples at low temperatures were evaluated,respectively.Based on the result of BBR test,the creep functions of the Burgers model and the Zener model were used to fit the low-temperature creep characteristics of the asphalt samples.Furthermore,the differential scanning calorimetry(DSC)test and the attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR)test were utilized to appraise the low-temperature stability and chemical properties of asphalt samples,respectively.The results showed that CR significantly improved the low-temperature properties of virgin asphalt,while CNTs had little effect.Moreover,during the degradation of CR,aromatic and aliphatic components were released.In particular,the aliphatic components of CR-modified asphalt were much higher than those of virgin asphalt,which had a significant effect on improving the low-temperature properties of the asphalt.The DSC test results showed that CR enhanced the low-temperature stability of the asphalt,while the addition of CNTs presented a slightly negative effect.
基金the National Natural Science Foundation of China(Grant No.51605314,No.51805338,and No.32260435)Major Science and Technology Projects of the Corps(Grant No.2018AA008)+2 种基金Project of the Corps’Key Area Innovation Team Building Program(Grant No.2019CB006)Shihezi University Young Innovative Talents Project(Grant No.CXPY202120)Postgraduate Research Innovation Project of Xinjiang Uygur Autonomous Region(Grant No.XJ2021G114).
文摘In view of the unclear understanding of the basic scientific problems such as the rheological mechanism of seed cotton,especially the lack of research on the creep characteristics of seed cotton,the machine-harvested seed cotton in the Xinjiang region was taken as the research object to find out the compression creep characteristics.The universal material testing machine was used to carry out a one-factor creep test,taking moisture content,feed quality,compression times,and trash content as test factors and instantaneous elastic modulus,hysteretic elastic modulus,viscosity coefficient,and delay time as test indicators.The ANOVA and correlation were analyzed by SPSS,and the creep process of the seed cotton was simulated by ADAMS.Results show that moisture content significantly affects the instantaneous elastic modulus,hysteretic elastic modulus,and viscosity coefficient(p<0.01).In addition,each value of which decreases with the increase in moisture content.Feed quality significantly affects the hysteretic elastic modulus and viscosity coefficient(p<0.05).Moreover,the hysteretic elastic modulus and viscosity coefficient increase with the increase in feed quality.The compression times significantly influence the instantaneous elastic modulus,hysteretic elastic modulus,and viscosity coefficient(p<0.01),each value of which increases with the increase of compression times.Furthermore,the trash content significantly influenced the hysteretic elastic modulus and viscosity coefficient(p<0.05).The absolute error between the simulated and experimental values ek is within−0.011-0.030 mm,and the relative errorφk is less than 7%.The experimental results can provide theoretical and data support for the study of rheological characteristics of machine-harvested seed cotton,the design of seed cotton packing devices,and the molding quality of cotton bale(mold).