The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th...The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.展开更多
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywher...In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.展开更多
In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is al...In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.展开更多
In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an ...In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.展开更多
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the c...Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.展开更多
In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and ...In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum.Numerical examples are presented in each case to illustrate these scenarios.It was established that given a prescribed spectral datum and it multiplies,then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.展开更多
We construct one multi-sender authentication code by algebraic combination method from eigenvalues and eigenvectors of the matrix over nite elds. Some parameters and the probabilities of three kinds of successful atta...We construct one multi-sender authentication code by algebraic combination method from eigenvalues and eigenvectors of the matrix over nite elds. Some parameters and the probabilities of three kinds of successful attack of this code are also computed. For multi-sender authentication code,it allows a group of senders to construct an authenticated message for a receiver such that the receiver can verify authenticity of the received message.展开更多
Some properties of characteristic polynomials, eigenvalues, and eigenvectors of the Wilkinson matrices W2n+1 and W2n+1 are presented. It is proved that the eigenvalues of W2n+1 just are the eigenvalues of its leadi...Some properties of characteristic polynomials, eigenvalues, and eigenvectors of the Wilkinson matrices W2n+1 and W2n+1 are presented. It is proved that the eigenvalues of W2n+1 just are the eigenvalues of its leading principal submatrix Vn and a bordered matrix of Vn. Recurrence formula are given for the characteristic polynomial of W2+n+1 . The eigenvectors of W2+n+1 are proved to be symmetric or skew symmetric. For W2n+1 , it is found that its eigenvalues are zero and the square roots of the eigenvalues of a bordered matrix of Vn2. And the eigenvectors of W2n+1 , which the corresponding eigenvahies are opposite in pairs, have close relationship.展开更多
Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk...Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper.展开更多
In this paper, we discuss an inverse eigenvalue problem for constructing a 2n × 2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a g...In this paper, we discuss an inverse eigenvalue problem for constructing a 2n × 2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a given Jacobi matrix. A new sufficient and necessary condition for the solvability of the above problem is given in this paper. Furthermore, we present a new algorithm and give some numerical results.展开更多
An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an as...An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,……, λs of the matrix satisfy |λ1| ≤... ≤|λr| and |λs| 〈|〈s+1| (s ≤r-l), then associated with any eigenvalue λi (i≤ s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi|/λs+1|q+l, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,……,λs A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.展开更多
The paper contains two parts. First, by applying the results about the eigenvalue perturbation bounds for Hermitian block tridiagonal matrices in paper [1], we obtain a new efficient method to estimate the perturbatio...The paper contains two parts. First, by applying the results about the eigenvalue perturbation bounds for Hermitian block tridiagonal matrices in paper [1], we obtain a new efficient method to estimate the perturbation bounds for singular values of block tridiagonal matrix. Second, we consider the perturbation bounds for eigenvalues of Hermitian matrix with block tridiagonal structure when its two adjacent blocks are perturbed simultaneously. In this case, when the eigenvalues of the perturbed matrix are well-separated from the spectrum of the diagonal blocks, our eigenvalues perturbation bounds are very sharp. The numerical examples illustrate the efficiency of our methods.展开更多
The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring...The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results.展开更多
Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmet...Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmetrical three-phase line on untransposed conditions is associated with Clarke’s matrix for error and frequency scan analyses in this paper. Error analyses are calculated for the eigenvalue diagonal elements obtained from Clarke’s matrix. The eigenvalue off-diagonal elements from the Clarke’s matrix application are compared to the correspondent exact eigenvalues. Based on the characteristic impedance and propagation function values, the frequency scan analyses show that there are great differences between the Clarke’s matrix results and the exact ones, considering frequency values from 10 kHz to 1 MHz. A correction procedure is applied obtaining two new transformation matrices. These matrices lead to good approximated results when compared to the exact ones. With the correction procedure applied to Clarke’s matrix, the relative values of the eigenvalue matrix off-diagonal element obtained from Clarke’s matrix are decreased while the frequency scan results are improved. The steps of correction procedure application are detailed, investigating the influence of each step on the obtained two new phase-mode transformation matrices.展开更多
We determine the left eigenvector of a stochastic matrix M associated to the eigenvalue 1 in the commutative and the noncommutative cases. In the commutative case, we see that the eigenvector associated to the eigenva...We determine the left eigenvector of a stochastic matrix M associated to the eigenvalue 1 in the commutative and the noncommutative cases. In the commutative case, we see that the eigenvector associated to the eigenvalue 0 is (N1,Nn) , where Ni is the i–th iprincipal minor of N=M–In , where In is the identity matrix of dimension n. In the noncommutative case, this eigenvector is (P1-1,Pn-1) , where Pi is the sum in Q《αij》 of the corresponding labels of nonempty paths starting from i and not passing through i in the complete directed graph associated to M .展开更多
Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. The experimental high-throughput measurement of levels of biochemical components, like metabolites and pr...Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. The experimental high-throughput measurement of levels of biochemical components, like metabolites and proteins, has become an integral part for characterization of biological systems. Yet, strategies of mathematical modeling to functionally integrate resulting data sets is still challenging. In plant biology, regulatory strategies that determine the metabolic output of metabolism as a response to changes in environmental conditions are hardly traceable by intuition. Mathematical modeling has been shown to be a promising approach to address such problems of plant-environment interaction promoting the comprehensive understanding of plant biochemistry and physiology. In this context, we recently published an inversely calculated solution for first-order partial derivatives, i.e. the Jacobian matrix, from experimental high-throughput data of a plant biochemical model system. Here, we present a biomathematical strategy, comprising 1) the inverse calculation of a biochemical Jacobian;2) the characterization of the associated eigenvalues and 3) the interpretation of the results with respect to biochemical regulation. Deriving the real parts of eigenvalues provides information about the stability of solutions of inverse calculations. We found that shifts of the eigenvalue real part distributions occur together with metabolic shifts induced by short-term and long-term exposure to low temperature. This indicates the suitability of mathematical Jacobian characterization for recognizing perturbations in the metabolic homeostasis of plant metabolism. Together with our previously published results on inverse Jacobian calculation this represents a comprehensive strategy of mathematical modeling for the analysis of complex biochemical systems and plant-environment interactions from the molecular to the ecosystems level.展开更多
In this paper, we consider the eigenvalue problem of a class of fourth-order operator matrices appearing in mechan- ics, including the geometric multiplicity, algebraic index, and algebraic multiplicity of the eigenva...In this paper, we consider the eigenvalue problem of a class of fourth-order operator matrices appearing in mechan- ics, including the geometric multiplicity, algebraic index, and algebraic multiplicity of the eigenvalue, the symplectic orthogonality, and completeness of eigen and root vector systems. The obtained results are applied to the plate bending problem.展开更多
基金This work is supported by the NSF of China (10471039, 10271043) and NSF of Zhejiang Province (M103087).
文摘The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.
文摘In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.
文摘In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.
基金This work is supported by the Natural Science Foundation of Fujian Province of China (No. Z0511010)the Natural Science Foundation of China (No. 10571012).
文摘Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.
文摘In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum.Numerical examples are presented in each case to illustrate these scenarios.It was established that given a prescribed spectral datum and it multiplies,then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61179026)the Fundamental Research of the Central Universities of China Civil Aviation University of Science Special(Grant No.3122016L005)
文摘We construct one multi-sender authentication code by algebraic combination method from eigenvalues and eigenvectors of the matrix over nite elds. Some parameters and the probabilities of three kinds of successful attack of this code are also computed. For multi-sender authentication code,it allows a group of senders to construct an authenticated message for a receiver such that the receiver can verify authenticity of the received message.
基金The Fundamental Research Funds for the Central Universities, China (No.10D10908)
文摘Some properties of characteristic polynomials, eigenvalues, and eigenvectors of the Wilkinson matrices W2n+1 and W2n+1 are presented. It is proved that the eigenvalues of W2n+1 just are the eigenvalues of its leading principal submatrix Vn and a bordered matrix of Vn. Recurrence formula are given for the characteristic polynomial of W2+n+1 . The eigenvectors of W2+n+1 are proved to be symmetric or skew symmetric. For W2n+1 , it is found that its eigenvalues are zero and the square roots of the eigenvalues of a bordered matrix of Vn2. And the eigenvectors of W2n+1 , which the corresponding eigenvahies are opposite in pairs, have close relationship.
基金Project 19771020 supported by National Science Foundation of China.
文摘Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper.
基金This work was supported by The National Natural Science Foundation of China, under grant 10271074.
文摘In this paper, we discuss an inverse eigenvalue problem for constructing a 2n × 2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a given Jacobi matrix. A new sufficient and necessary condition for the solvability of the above problem is given in this paper. Furthermore, we present a new algorithm and give some numerical results.
基金supported by the National Natural Science Foundation of China(No.11101149)the Basic Academic Discipline Program of Shanghai University of Finance and Economics(No.2013950575)
文摘An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,……, λs of the matrix satisfy |λ1| ≤... ≤|λr| and |λs| 〈|〈s+1| (s ≤r-l), then associated with any eigenvalue λi (i≤ s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi|/λs+1|q+l, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,……,λs A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.
文摘The paper contains two parts. First, by applying the results about the eigenvalue perturbation bounds for Hermitian block tridiagonal matrices in paper [1], we obtain a new efficient method to estimate the perturbation bounds for singular values of block tridiagonal matrix. Second, we consider the perturbation bounds for eigenvalues of Hermitian matrix with block tridiagonal structure when its two adjacent blocks are perturbed simultaneously. In this case, when the eigenvalues of the perturbed matrix are well-separated from the spectrum of the diagonal blocks, our eigenvalues perturbation bounds are very sharp. The numerical examples illustrate the efficiency of our methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results.
文摘Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmetrical three-phase line on untransposed conditions is associated with Clarke’s matrix for error and frequency scan analyses in this paper. Error analyses are calculated for the eigenvalue diagonal elements obtained from Clarke’s matrix. The eigenvalue off-diagonal elements from the Clarke’s matrix application are compared to the correspondent exact eigenvalues. Based on the characteristic impedance and propagation function values, the frequency scan analyses show that there are great differences between the Clarke’s matrix results and the exact ones, considering frequency values from 10 kHz to 1 MHz. A correction procedure is applied obtaining two new transformation matrices. These matrices lead to good approximated results when compared to the exact ones. With the correction procedure applied to Clarke’s matrix, the relative values of the eigenvalue matrix off-diagonal element obtained from Clarke’s matrix are decreased while the frequency scan results are improved. The steps of correction procedure application are detailed, investigating the influence of each step on the obtained two new phase-mode transformation matrices.
文摘We determine the left eigenvector of a stochastic matrix M associated to the eigenvalue 1 in the commutative and the noncommutative cases. In the commutative case, we see that the eigenvector associated to the eigenvalue 0 is (N1,Nn) , where Ni is the i–th iprincipal minor of N=M–In , where In is the identity matrix of dimension n. In the noncommutative case, this eigenvector is (P1-1,Pn-1) , where Pi is the sum in Q《αij》 of the corresponding labels of nonempty paths starting from i and not passing through i in the complete directed graph associated to M .
文摘Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. The experimental high-throughput measurement of levels of biochemical components, like metabolites and proteins, has become an integral part for characterization of biological systems. Yet, strategies of mathematical modeling to functionally integrate resulting data sets is still challenging. In plant biology, regulatory strategies that determine the metabolic output of metabolism as a response to changes in environmental conditions are hardly traceable by intuition. Mathematical modeling has been shown to be a promising approach to address such problems of plant-environment interaction promoting the comprehensive understanding of plant biochemistry and physiology. In this context, we recently published an inversely calculated solution for first-order partial derivatives, i.e. the Jacobian matrix, from experimental high-throughput data of a plant biochemical model system. Here, we present a biomathematical strategy, comprising 1) the inverse calculation of a biochemical Jacobian;2) the characterization of the associated eigenvalues and 3) the interpretation of the results with respect to biochemical regulation. Deriving the real parts of eigenvalues provides information about the stability of solutions of inverse calculations. We found that shifts of the eigenvalue real part distributions occur together with metabolic shifts induced by short-term and long-term exposure to low temperature. This indicates the suitability of mathematical Jacobian characterization for recognizing perturbations in the metabolic homeostasis of plant metabolism. Together with our previously published results on inverse Jacobian calculation this represents a comprehensive strategy of mathematical modeling for the analysis of complex biochemical systems and plant-environment interactions from the molecular to the ecosystems level.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11061019 and 10962004)the Chunhui Program of Ministry of Education of China (Grant No. Z2009-1-01010)+1 种基金the Natural Science Foundation of Inner Mongolia, China(Grant Nos. 2010MS0110 and 2009BS0101)the Cultivation of Innovative Talent of ‘211 Project’ of Inner Mongolia University
文摘In this paper, we consider the eigenvalue problem of a class of fourth-order operator matrices appearing in mechan- ics, including the geometric multiplicity, algebraic index, and algebraic multiplicity of the eigenvalue, the symplectic orthogonality, and completeness of eigen and root vector systems. The obtained results are applied to the plate bending problem.