In the actual engineering of the structure, mechanical notch is inevitable, which will significantly reduce the fatigue life of the structure. In order to ensure the application of notch structures in engineering, the...In the actual engineering of the structure, mechanical notch is inevitable, which will significantly reduce the fatigue life of the structure. In order to ensure the application of notch structures in engineering, the accurate evaluation of the impact of notch on fatigue life has become the basis of fatigue reliability design of structures. To investigate the influence of the concave structure on the overall fatigue life in practical engineering, three different sizes of V-notch parts and concave structure simulation parts were designed, and the life prediction was carried out by using the critical distance method. The results show that the stress gradient of the concave structure with the same stress concentration coefficient is much greater than that of the V-notch structure. Considering the notch effect, the S-T model in the critical distance method is modified by the stress concentration coefficient and stress gradient, and it is found that the life prediction accuracy reaches the ideal.展开更多
BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from...BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from coronavirus disease 2019(COVID-19).There is a paucity of data from the Middle East assessing the post-ICU discharge mental health status of patients who had COVID-19.AIM To evaluate anxiety and depression among patients who had severe COVID-19.METHODS This is a prospective single-center follow-up questionnaire-based study of adults who were admitted to the ICU or under ICU consultation for>24 h for COVID-19.Eligible patients were contacted via telephone.The patient’s anxiety and depression six months after ICU discharge were assessed using the Hospital Anxiety and Depression Scale(HADS).The primary outcome was the mean HADS score.The secondary outcomes were risk factors of anxiety and/or depression.RESULTS Patients who were admitted to the ICU because of COVID-19 were screened(n=518).Of these,48 completed the questionnaires.The mean age was 56.3±17.2 years.Thirty patients(62.5%)were male.The main comorbidities were endocrine(n=24,50%)and cardiovascular(n=21,43.8%)diseases.The mean overall HADS score for anxiety and depression at 6 months post-ICU discharge was 11.4(SD±8.5).A HADS score of>7 for anxiety and depression was detected in 15 patients(30%)and 18 patients(36%),respectively.Results from the multivariable ordered logistic regression demonstrated that vasopressor use was associated with the development of anxiety and depression[odds ratio(OR)39.06,95% confidence interval:1.309-1165.8;P<0.05].CONCLUSION Six months after ICU discharge,30% of patients who had COVID-19 demonstrated a HADS score that confirmed anxiety and depression.To compare the psychological status of patients following an ICU admission(with vs without COVID-19),further studies are warranted.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung n...In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.展开更多
In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an ext...In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.展开更多
Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it canno...Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena.展开更多
This article concerns the integral related to the transverse comoving distance and, in turn, to the luminosity distance both in the standard non-flat and flat cosmology. The purpose is to determine a straightforward m...This article concerns the integral related to the transverse comoving distance and, in turn, to the luminosity distance both in the standard non-flat and flat cosmology. The purpose is to determine a straightforward mathematical formulation for the luminosity distance as function of the transverse comoving distance for all cosmology cases with a non-zero cosmological constant by adopting a different mindset. The applied method deals with incomplete elliptical integrals of the first kind associated with the polynomial roots admitted in the comoving distance integral according to the scientific literature. The outcome shows that the luminosity distance can be obtained by the combination of an analytical solution followed by a numerical integration in order to account for the redshift. This solution is solely compared to the current Gaussian quadrature method used as basic recognized algorithm in standard cosmology.展开更多
We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of th...We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of the quantum critical point.A double peak at the gap edge plus a dip feature at zero-bias has been observed on the PCAR spectra,indicative of the presence of a nodeless gap in BaFe_(2)(As_(0.7)P_(0.3))_(2).Detailed analysis within a sophisticated theoretical model reveals an anisotropic gap with deep gap minima.The PCARs also feature additional structures related to the electron-bosonic coupling mode.Using the extracted superconducting energy gap value,a characteristic bosonic energy Ω_(b) and its temperature dependence are obtained,comparable with the spin-resonance energy observed in neutron scattering experiment.These results indicate a magnetism-driven quantum critical point in the BaFe_(2)(As_(1-x)P_(x))_(2) system.展开更多
Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearit...Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons.By exploiting quantum critical behavior,we propose a powerful scheme to control the power-harvesting efficiency in the microwave regime,where the driven-dissipative optical system acts as an energy pump.It drives electron transport against a load in the quantum-dot circuit.The energy transfer and,consequently,the harvesting efficiency are enhanced near the critical point.As the critical point moves towards to low input power,high efficiency within experimental parameters is achieved.Our results complement fundamental studies of photon-to-electron conversion at the nanoscale and provide practical guidance for designs of integrated photoelectric devices through quantum criticality.展开更多
Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypog...Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypoglycemia,classified as level 1 hypoglycemia,is defined by blood glucose levels below 70 mg/dL and can be effectively addressed through carbohydrate intake.Severe hypoglycemia,denoted by blood glucose levels less than 54 mg/dL,poses a life-threatening risk if left untreated.Individuals with type 1 and type 2 diabetes undergoing insulin treatment are particularly susceptible to hypoglycemia due to impaired counterregulatory mechanisms.展开更多
When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the g...When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.展开更多
Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the ...Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.展开更多
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis...The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.展开更多
Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispo...Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispositions, do not guarantee success in the workplace, because Critical Thinking Dispositions (CTD) are important elements of intellectual reasoning that simulate a person towards using the CT skills. Therefore, nursing educational programs should promote lifelong learning rather than focusing on transferring the content of nursing knowledge only. And for this purpose, quality education is the key. Education should focus on teaching from diverse perspectives, incorporating various teaching learning strategies that are congruent with the modern era. Purpose: The purpose of this study is to explore critical thinking dispositions among final year Baccalaureate Nursing students of various military colleges of nursing, in Pakistan. Methodology: A descriptive qualitative exploratory study design was used to investigate the CTD of BSc final year nursing students. The study population included twelve willing nursing students, from six military colleges across the country. Demographic information and consent was taken from the participants of the study. In-depth interviews, through a semi structured interview guide, and probes were used to obtain data related to personal experiences of CTD amongst the nursing students. Results: Data analysis showed two broad themes: 1) Perceptions of CT, and 2) Experiences of CT dispositions. In theme one, the emerging category was: Clarity of CT;whereas in theme two, the categories that emerged were: a) Truth Seeking, b) Open Mindedness, c) Inquisitiveness, and d) Self Organization. Conclusion: The findings of the study revealed positive dispositions towards truth seeking, open mindedness, and self-organization, whereas disposition towards inquisitiveness was weak. Self-confidence and maturity also emerged as positive factors that the students possessed. This study recommends that faculty and learners should extend their concept of CTD, and emphasizes its application in daily routine. Additionally, faculty should modify their instructional strategies and focus on the cultivation of dispositions of inquisitiveness, curiosity, and allow questioning by students in the class.展开更多
Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the conditio...Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.展开更多
Purpose:To contribute to the study of networks and graphs.Design/methodology/approach:We apply standard mathematical thinking.Findings:We show that the distance distribution in an undirected network Lorenz majorizes t...Purpose:To contribute to the study of networks and graphs.Design/methodology/approach:We apply standard mathematical thinking.Findings:We show that the distance distribution in an undirected network Lorenz majorizes the one of a chain.As a consequence,the average and median distances in any such network are smaller than or equal to those of a chain.Research limitations:We restricted our investigations to undirected,unweighted networks.Practical implications:We are convinced that these results are useful in the study of small worlds and the so-called six degrees of separation property.Originality/value:To the best of our knowledge our research contains new network results,especially those related to frequencies of distances.展开更多
While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization ...While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage.展开更多
In this paper,a contention-based connection-free transmission scheme is proposed to meet the stringent requirements of ultra-reliability and low-latency for critical machine-type communication(cMTC).To improve reliabi...In this paper,a contention-based connection-free transmission scheme is proposed to meet the stringent requirements of ultra-reliability and low-latency for critical machine-type communication(cMTC).To improve reliability,we design multiple independent sparse orthogonal pilots(MISOP)to significantly reduce the probability of pilot collision to the order of 10^(−5).Besides,the advancements of massive MIMO(mMIMO)are exploited to further enhance the reliability.To achieve low latency,connection-free slot-based one-shot transmission without retransmissions is adopted.On the receiver side,single round of multi-user detection(MUD)without interference cancellation(IC)can reduce the processing delay.The imprecise synchronization between cMTC device and the gNB in connection-free transmission,e.g.,time and frequency offsets,are also considered.The simulation results shows that the proposed scheme can well satisfy the ambitious requirements of cMTC,and has the potential applications in supporting massive cMTC devices in 6G.展开更多
Iron is a double-edged sword!Despite being essential for numerous physiological processes of the body,a dysregulated iron metabolism can result in tissue da-mage,exaggerated inflammatory response,and increased suscept...Iron is a double-edged sword!Despite being essential for numerous physiological processes of the body,a dysregulated iron metabolism can result in tissue da-mage,exaggerated inflammatory response,and increased susceptibility to infection with certain pathogens that thrive in iron-rich environment.During sepsis,there is an alteration of iron metabolism,leading to increased transport and uptake into cells.This increase in labile iron may cause oxidative damage and cellular injury(ferroptosis)which progresses as the disease worsens.Critically ill patients are often complicated with systemic inflammation which may contribute to multiple organ dysfunction syndrome or sepsis,a common cause of mortality in intensive care unit.Originally,ferritin was known to play an important role in the hematopoietic system for its iron storage capacity.Recently,its role has emerged as a predictor of poor prognosis in chronic inflammation and critical illnesses.Apart from predicting the disease outcome,serum ferritin can poten-tially reflect disease activity as well.展开更多
文摘In the actual engineering of the structure, mechanical notch is inevitable, which will significantly reduce the fatigue life of the structure. In order to ensure the application of notch structures in engineering, the accurate evaluation of the impact of notch on fatigue life has become the basis of fatigue reliability design of structures. To investigate the influence of the concave structure on the overall fatigue life in practical engineering, three different sizes of V-notch parts and concave structure simulation parts were designed, and the life prediction was carried out by using the critical distance method. The results show that the stress gradient of the concave structure with the same stress concentration coefficient is much greater than that of the V-notch structure. Considering the notch effect, the S-T model in the critical distance method is modified by the stress concentration coefficient and stress gradient, and it is found that the life prediction accuracy reaches the ideal.
基金the Researchers Supporting Project number,King Saud University,Riyadh,Saudi Arabia,No.RSPD2024R919.
文摘BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from coronavirus disease 2019(COVID-19).There is a paucity of data from the Middle East assessing the post-ICU discharge mental health status of patients who had COVID-19.AIM To evaluate anxiety and depression among patients who had severe COVID-19.METHODS This is a prospective single-center follow-up questionnaire-based study of adults who were admitted to the ICU or under ICU consultation for>24 h for COVID-19.Eligible patients were contacted via telephone.The patient’s anxiety and depression six months after ICU discharge were assessed using the Hospital Anxiety and Depression Scale(HADS).The primary outcome was the mean HADS score.The secondary outcomes were risk factors of anxiety and/or depression.RESULTS Patients who were admitted to the ICU because of COVID-19 were screened(n=518).Of these,48 completed the questionnaires.The mean age was 56.3±17.2 years.Thirty patients(62.5%)were male.The main comorbidities were endocrine(n=24,50%)and cardiovascular(n=21,43.8%)diseases.The mean overall HADS score for anxiety and depression at 6 months post-ICU discharge was 11.4(SD±8.5).A HADS score of>7 for anxiety and depression was detected in 15 patients(30%)and 18 patients(36%),respectively.Results from the multivariable ordered logistic regression demonstrated that vasopressor use was associated with the development of anxiety and depression[odds ratio(OR)39.06,95% confidence interval:1.309-1165.8;P<0.05].CONCLUSION Six months after ICU discharge,30% of patients who had COVID-19 demonstrated a HADS score that confirmed anxiety and depression.To compare the psychological status of patients following an ICU admission(with vs without COVID-19),further studies are warranted.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0012724)The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.
文摘In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20200737)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)+1 种基金the Innovation Research Project of Jiangsu Province(Grant No.JSSCBS20210521)the China Postdoctoral Science Foundation(Grant No.2022M721693)。
文摘Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena.
文摘This article concerns the integral related to the transverse comoving distance and, in turn, to the luminosity distance both in the standard non-flat and flat cosmology. The purpose is to determine a straightforward mathematical formulation for the luminosity distance as function of the transverse comoving distance for all cosmology cases with a non-zero cosmological constant by adopting a different mindset. The applied method deals with incomplete elliptical integrals of the first kind associated with the polynomial roots admitted in the comoving distance integral according to the scientific literature. The outcome shows that the luminosity distance can be obtained by the combination of an analytical solution followed by a numerical integration in order to account for the redshift. This solution is solely compared to the current Gaussian quadrature method used as basic recognized algorithm in standard cosmology.
基金supported by the National Natural Science Foundation of China(Grant Nos.11774303 and 11574373)the National Key Research and Development Program of China(Grant Nos.2022YFA1403402,2021YFA1400401,and 2020YFA0406003)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB33000000 and GJTD-2020-01)financial support from the Joint Fund of Yunnan Provincial Science and Technology Department(Grant No.2019FY003008)。
文摘We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of the quantum critical point.A double peak at the gap edge plus a dip feature at zero-bias has been observed on the PCAR spectra,indicative of the presence of a nodeless gap in BaFe_(2)(As_(0.7)P_(0.3))_(2).Detailed analysis within a sophisticated theoretical model reveals an anisotropic gap with deep gap minima.The PCARs also feature additional structures related to the electron-bosonic coupling mode.Using the extracted superconducting energy gap value,a characteristic bosonic energy Ω_(b) and its temperature dependence are obtained,comparable with the spin-resonance energy observed in neutron scattering experiment.These results indicate a magnetism-driven quantum critical point in the BaFe_(2)(As_(1-x)P_(x))_(2) system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12204405, 21873033, and 22273029)the Yunnan Fundamental Research Project (Grant Nos. 202301AT070108 and 202401AW070005)
文摘Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons.By exploiting quantum critical behavior,we propose a powerful scheme to control the power-harvesting efficiency in the microwave regime,where the driven-dissipative optical system acts as an energy pump.It drives electron transport against a load in the quantum-dot circuit.The energy transfer and,consequently,the harvesting efficiency are enhanced near the critical point.As the critical point moves towards to low input power,high efficiency within experimental parameters is achieved.Our results complement fundamental studies of photon-to-electron conversion at the nanoscale and provide practical guidance for designs of integrated photoelectric devices through quantum criticality.
基金generously supported by the faculty startup funds from Auburn University at Montgomery (to SSVPS)。
文摘Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypoglycemia,classified as level 1 hypoglycemia,is defined by blood glucose levels below 70 mg/dL and can be effectively addressed through carbohydrate intake.Severe hypoglycemia,denoted by blood glucose levels less than 54 mg/dL,poses a life-threatening risk if left untreated.Individuals with type 1 and type 2 diabetes undergoing insulin treatment are particularly susceptible to hypoglycemia due to impaired counterregulatory mechanisms.
基金Basic research program of Shanxi Province(20210302124136 and 20210302123177)National Key R&D Program of China(2019YFA0705501)+1 种基金Key R&D and promotion projects in Henan Province(212102310010)National Natural Science Foundation of China(52104144,U23B2088).
文摘When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.
基金supported by the Czech Ministry of Education,Youth and Sports(Project No.CZ.02.2.69/0.0/0.0/18_053/0016980)the Grant Agency of the Czech Republic(Grant No.GM23-05027M).
文摘Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.
基金National Natural Science Foundation of China (52394195)Joint research program for ecological conservation and high-quality development of the Yellow River Basin (2022-YRUC-01-0304).
文摘The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.
文摘Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispositions, do not guarantee success in the workplace, because Critical Thinking Dispositions (CTD) are important elements of intellectual reasoning that simulate a person towards using the CT skills. Therefore, nursing educational programs should promote lifelong learning rather than focusing on transferring the content of nursing knowledge only. And for this purpose, quality education is the key. Education should focus on teaching from diverse perspectives, incorporating various teaching learning strategies that are congruent with the modern era. Purpose: The purpose of this study is to explore critical thinking dispositions among final year Baccalaureate Nursing students of various military colleges of nursing, in Pakistan. Methodology: A descriptive qualitative exploratory study design was used to investigate the CTD of BSc final year nursing students. The study population included twelve willing nursing students, from six military colleges across the country. Demographic information and consent was taken from the participants of the study. In-depth interviews, through a semi structured interview guide, and probes were used to obtain data related to personal experiences of CTD amongst the nursing students. Results: Data analysis showed two broad themes: 1) Perceptions of CT, and 2) Experiences of CT dispositions. In theme one, the emerging category was: Clarity of CT;whereas in theme two, the categories that emerged were: a) Truth Seeking, b) Open Mindedness, c) Inquisitiveness, and d) Self Organization. Conclusion: The findings of the study revealed positive dispositions towards truth seeking, open mindedness, and self-organization, whereas disposition towards inquisitiveness was weak. Self-confidence and maturity also emerged as positive factors that the students possessed. This study recommends that faculty and learners should extend their concept of CTD, and emphasizes its application in daily routine. Additionally, faculty should modify their instructional strategies and focus on the cultivation of dispositions of inquisitiveness, curiosity, and allow questioning by students in the class.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFB0408300)the National Natural Science Foundation of China(Grant No.62175246)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.22ZR1471100)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.YIPA2021244)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701).
文摘Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.
文摘Purpose:To contribute to the study of networks and graphs.Design/methodology/approach:We apply standard mathematical thinking.Findings:We show that the distance distribution in an undirected network Lorenz majorizes the one of a chain.As a consequence,the average and median distances in any such network are smaller than or equal to those of a chain.Research limitations:We restricted our investigations to undirected,unweighted networks.Practical implications:We are convinced that these results are useful in the study of small worlds and the so-called six degrees of separation property.Originality/value:To the best of our knowledge our research contains new network results,especially those related to frequencies of distances.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62103375 and 62006106)the Zhejiang Provincial Philosophy and Social Science Planning Project(Grant No.22NDJC009Z)+1 种基金the Education Ministry Humanities and Social Science Foundation of China(Grant Nos.19YJCZH056 and 21YJC630120)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LY23F030003 and LQ21F020005).
文摘While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage.
基金supported by the Key-Area Research and Development Program of Guangdong Province under Grant 2019B010157002the National Key Research and Development Program of China under grant 2020YFB1807202.
文摘In this paper,a contention-based connection-free transmission scheme is proposed to meet the stringent requirements of ultra-reliability and low-latency for critical machine-type communication(cMTC).To improve reliability,we design multiple independent sparse orthogonal pilots(MISOP)to significantly reduce the probability of pilot collision to the order of 10^(−5).Besides,the advancements of massive MIMO(mMIMO)are exploited to further enhance the reliability.To achieve low latency,connection-free slot-based one-shot transmission without retransmissions is adopted.On the receiver side,single round of multi-user detection(MUD)without interference cancellation(IC)can reduce the processing delay.The imprecise synchronization between cMTC device and the gNB in connection-free transmission,e.g.,time and frequency offsets,are also considered.The simulation results shows that the proposed scheme can well satisfy the ambitious requirements of cMTC,and has the potential applications in supporting massive cMTC devices in 6G.
文摘Iron is a double-edged sword!Despite being essential for numerous physiological processes of the body,a dysregulated iron metabolism can result in tissue da-mage,exaggerated inflammatory response,and increased susceptibility to infection with certain pathogens that thrive in iron-rich environment.During sepsis,there is an alteration of iron metabolism,leading to increased transport and uptake into cells.This increase in labile iron may cause oxidative damage and cellular injury(ferroptosis)which progresses as the disease worsens.Critically ill patients are often complicated with systemic inflammation which may contribute to multiple organ dysfunction syndrome or sepsis,a common cause of mortality in intensive care unit.Originally,ferritin was known to play an important role in the hematopoietic system for its iron storage capacity.Recently,its role has emerged as a predictor of poor prognosis in chronic inflammation and critical illnesses.Apart from predicting the disease outcome,serum ferritin can poten-tially reflect disease activity as well.