In current critical area models, it is generally assumed the defect outlines are circular and the conductors to be rectangle or the merger of rectangles. However, real defects and conductors associated with optimal la...In current critical area models, it is generally assumed the defect outlines are circular and the conductors to be rectangle or the merger of rectangles. However, real defects and conductors associated with optimal layout design exhibit a great variety of shapes. Based on mathematical morphology, a new critical area model is presented, which can be used to estimate the critical area of short circuit, open circuit and pinhole. Based on the new model, the efficient validity check algorithms are explored to extract critical areas of short circuit, open circuit and pinhole from layouts. The results of experiment on an approximate layout of 4 × 4 shifts register show that the new model predicts the critical areas accurately. These results suggest that the proposed model and algorithm could provide new approaches for yield prediction.展开更多
In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missin...In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.展开更多
Slope spectrum has been proved to be a significant methodology in revealing geomorphological features in the study of Chinese loess terrain. The determination of critical areas in deriving slope spectra is an indispen...Slope spectrum has been proved to be a significant methodology in revealing geomorphological features in the study of Chinese loess terrain. The determination of critical areas in deriving slope spectra is an indispensable task. Along with the increase in the size of the study area, the derived spectra are becoming more and more alike, such that their dif- ferences can be ignored in favor of a standard. Subsequently, the test size is defined as the Slope Spectrum Critical Area (SSCA). SSCA is not only the foundation of the slope spectrum calculation but also, to some extent, a reflection of geomorphological development of loess relief. High resolution DEMs are important in extracting the slope spectrum. A set of 48 DEMs with different landform areas of the Loess Plateau in northern Shaanxi province was selected for the experiment. The spatial distribution of SSCA is investigated with a geo-statistical analysis method, resulting in values ranging from 6.18 km^2 to 35.1 km^2. Primary experimental results show that the spatial distribution of SSCA is correlated with the spatial distribution of the soil erosion intensity, to a certain extent reflecting the terrain complexity. The critical area of the slope spectrum presents a spatial variation trend of weak-strong-weak from north to south. Four terrain parameters, gully density, slope skewness, terrain driving force (Td) and slope of slope (SOS), were chosen as indicators. There exists a good exponential function relationship between SSCA and gully density, terrain driving force (Td) and SOS and a loga- rithmic function relationship between SSCA and slope skewness. Slope skewness increases, and gully density, terrain driving force and SOS decrease with increasing SSCA. SSCA can be utilized as a discriminating factor to identify loess landforms, in that spatial distributions of SSCA and the evolution of loess landforms are correlative. Following the evolution of a loess landform from tableland to gully-hilly region, this also proves that SSCA can represent the development degree of local landforms. The critical stable regions of the Loess Plateau represent the degree of development of loess landforms. Its chief significance is that the per- ception of stable areas can be used to determine the minimal geographical unit.展开更多
As die size and complexity increase, accurate and efficient extraction of the critical area is essential for yield prediction. Aiming at eliminating the potential integration errors of the traditional shape shifting m...As die size and complexity increase, accurate and efficient extraction of the critical area is essential for yield prediction. Aiming at eliminating the potential integration errors of the traditional shape shifting method, an improved shape shifting method is proposed for Manhattan layouts. By mathematical analyses of the relevance of critical areas to defect sizes, the critical area for all defect sizes is modeled as a piecewise quadratic polynomial function of defect size, which can be obtained by extracting critical area for some certain defect sizes. Because the improved method calculates critical areas for all defect sizes instead of several discrete values with traditional shape shifting method, it eliminates the integration error of the average critical area. Experiments on industrial layouts show that the improved shape shifting method can improve the accuracy of the average critical area calculation by 24.3% or reduce about 59.7% computational expense compared with the traditional method.展开更多
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture c...In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.展开更多
[Objective]The paper was to formulate catchable size and total allowable catch of Sebastes schlegelii in Zhangzidao artificial reef area.[Method]Based on analysis of length-weight formula,body length and weight growth...[Objective]The paper was to formulate catchable size and total allowable catch of Sebastes schlegelii in Zhangzidao artificial reef area.[Method]Based on analysis of length-weight formula,body length and weight growth equations,and instantaneous mortality rate,the inflection age and critical age of weight growth were calculated,and the biomass of S.schlegelii in Zhangzidao artificial reef area was estimated.[Result]The growth equation of body length was Lt=412.5×[1-e^-0.21(t+0.65)]and the growth equation of body weight was Wt=1 734.2×[1-e^-0.21(t+0.65)]^2.92.The inflection age and critical age for weight growth of S.schlegelii were 4.45 and 4.82 a,respectively.The biomass in Zhangzidao artificial reef area was about 456.8 t.[Conclusion]For S.schlegelii flock in Zhangzidao artificial reef area,the catchable length was about 271.2-281.7 mm,the catchable weight as about 509.4-569.5 g,and the total allowable catch was about 60.43 t.展开更多
In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a grea...In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a great variety of shapes. In this paper,a novel yield model is presented and the critical area model of short circuit is correspondingly provided. In comparison with the circular model corrently available, the new model takes the similarity shape to an original defect, the two-dimensional distributional characteristic of defects, the feature of a layout routing and the character of yield estimation into account. As for the aspect of prediction of yield, the experimental results show that the new model may predict the yield caused by real defects more accurately than the circular model does. It is significant that the yield is accurately estimated and improved using the proposed model.展开更多
Phosphorus index method is an effective method to assess the risk of phosphorus loss,identify the critical source areas and reasonably control the agricultural non-point source pollution.The researches on phosphorus i...Phosphorus index method is an effective method to assess the risk of phosphorus loss,identify the critical source areas and reasonably control the agricultural non-point source pollution.The researches on phosphorus index assessment method have been started earlier in foreign countries.Currently,phosphorus index assessment method has been widely used in the United States and European countries through continuous development and improvement.However,the domestic research on non-point source phosphorus pollution assessment has just started,and the phosphorus index method that is suitable for the characteristics of agriculture in China has not yet been established.This paper summarizes and analyzes systematically the related research advances in phosphorus index method at home and abroad,and illustrates the issues presented in phosphorus index method.In addition,the researches on and application of phosphorus index method in China are discussed.展开更多
Critical source areas (CSAs), characterized by severe soil erosion and high sediment yield, are considered to have a high priority for conservation. How to identify CSAs and assess the effectiveness of conservation ...Critical source areas (CSAs), characterized by severe soil erosion and high sediment yield, are considered to have a high priority for conservation. How to identify CSAs and assess the effectiveness of conservation practices is a key issue in site-specific watershed management. The Soil and Water Assessment Tool (SWAT) model is a useful tool for site-specific conservation practices design and several studies have attempted to identify CSAs based on watershed models. However, limited research has reported about the effectiveness of conservation practices targeting CSAs. The aim of this study was to assess the effectiveness of conservation pracrices targeted on CSAs using the SWAT model. CSA was firstly identified based on the 4-year average yearly erosion of each HRU. Appropriate soil conservation practices were then designed for the CSAs. A scenario with conservation practices for the whole watershed was also established as the contrasting counter parts scheme and then compared to the outcome of CSA-targeted conservation practices. The result shows that SWAT can accurately simulate sediment yield in the study area. CSAs were mainly located in slope farmland areas and steep gullies, coinciding with the distribution of land use and slope. The identified CSA covered 20% of the HRUs and contributed on average 44% of sediment yield. Conservation practices targeting CSAs had higher sediment reduction effectiveness (24 115 t km-2 y-1) than conservation practice covering the whole watershed (20 290 t km-2 y-1). Thus conservation practices targeting CSAs are more effective than broad conservation practices. We conclude that soil conservation practices focusing on CSAs do increase sediment reduction effectiveness. Targeting the placement of soil conservation practices based on the CSAs concept will assist water quality control in watersheds.展开更多
In the existing models of estimating the yield and critical area, the defect outline is usually assumed to be circular, but the observed real defect outlines are irregular in shape. In this paper, estimation of the yi...In the existing models of estimating the yield and critical area, the defect outline is usually assumed to be circular, but the observed real defect outlines are irregular in shape. In this paper, estimation of the yield and critical area is made using the Monte Carlo technique and the relationship between the errors of yield estimated by circular defect and the rectangle degree of the defect is analysed. The rectangular model of a real defect is presented, and the yield model is provided correspondingly. The models take into account an outline similar to that of an original defect, the characteristics of two-dimensional distribution of defects, the feature of a layout routing, and the character of yield estimation. In order to make the models practicable, the critical area computations related to rectangular defect and regular (vertical or horizontal) routing are discussed. The critical areas associated with rectangular defect and non- regular routing are developed also, based on the mathematical morphology. The experimental results show that the new yield model may predict the yield caused by real defects more accurately than the circular model. It is significant that the yield is accurately estimated using the proposed model for IC metals.展开更多
For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yie...For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yield loss caused by redundancy material defects, the choice of nets to be optimized at first is an important step in the process of layout optimization. This paper provides a new sensitivity model for a short net, which is net-based and reflects the size of the critical area between a single net and the nets around it. Since this model is based on a single net and includes the information of the surrounding nets, the critical area between the single net and surrounding nets can be reduced at the same time. In this way, the efficiency of layout optimization becomes higher. According to experimental observations~ this sensitivity model can be used to choose the position for optimization. Compared with the chip-area-based and basic- layout-based sensitivity models, our sensitivity model not only has higher efficiency, but also confirms that choosing the net to be optimized at first improves the design.展开更多
Cell adhesion to extracellular matrices(ECM)is critical to physiological and pathological processes as well as biomedical and biotechnological applications.It has been known that a cell can adhere on an adhesive micro...Cell adhesion to extracellular matrices(ECM)is critical to physiological and pathological processes as well as biomedical and biotechnological applications.It has been known that a cell can adhere on an adhesive microisland only over a critical size.But no publication has concerned critical adhesion areas of cells on microislands with nanoarray decoration.Herein,we fabricated a series of micro-nanopatterns with different microisland sizes and arginine-glycine-aspartate(RGD)nanospacings on a nonfouling poly(ethylene glycol)background.Besides reproducing that nanospacing of RGD,a ligand of its receptor integrin(a membrane protein),significantly influences specific cell adhesion on bioactive nanoarrays,we confirmed that the concept of critical adhesion area originally suggested in studies of cells on micropatterns was justified also on the micro-nanopatterns,yet the latter exhibited more characteristic behaviors of cell adhesion.We found increased critical adhesion areas of human mesenchymal stem cells(hMSCs)on nanoarrayed microislands with increased RGD nanospacings.However,the numbers of nanodots with respect to the critical adhesion areas were not a constant.A unified interpretation was then put forward after combining nonspecific background adhesion and specific cell adhesion.We further carried out the asymptotic analysis of a series of micro-nanopatterned surfaces to obtain the effective RGD nanospacing on unpatterned free surfaces with densely grafted RGD,which could be estimated nonzero but has never been revealed previously without the assistance of the micro-nanopatterning techniques and the corresponding analysis.展开更多
By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deepl...By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deeply. but also got the crilicaldepth of plastic softening area of chamber that is valuable in the controlling engineering of rockburst. the chamber displacement jump and energy liberation have been derived. the influence of rock parameters on the rockburst has been discussed .展开更多
In existing integrated circuit (IC) fabrication methods,the yield is typically limited by defects generated in the manufacturing process.In fact,the yield often shows a good correlation with the type and density of th...In existing integrated circuit (IC) fabrication methods,the yield is typically limited by defects generated in the manufacturing process.In fact,the yield often shows a good correlation with the type and density of the defect.As a result,an accurate defect limited yield model is essential for accurate correlation analysis and yield prediction.Since real defects exhibit a great variety of shapes,to ensure the accuracy of yield prediction,it is necessary to select the most appropriate defect model and to extract the critical area based on the defect model.Considering the realistic outline of scratches introduced by the chemical mechanical polishing (CMP) process,we propose a novel scratch-concerned yield model.A linear model is introduced to model scratches.Based on the linear model,the related critical area extraction algorithm and defect density distribution are discussed.Owing to higher correspondence with the realistic outline of scratches,the linear defect model enables a more accurate yield prediction caused by scratches and results in a more accurate total product yield prediction as compared to the traditional circular model.展开更多
A new gridless router to improve the yield of IC layout is presented. The improvement of yield is achieved by reducing the critical areas where the circuit failures are likely to happen. This gridless area router bene...A new gridless router to improve the yield of IC layout is presented. The improvement of yield is achieved by reducing the critical areas where the circuit failures are likely to happen. This gridless area router benefits from a novel cost function to compute critical areas during routing process, and heuristically lays the patterns on the chip area where it is less possible to induce critical area. The router also takes other objectives into consideration, such as routing completion rate and nets length. It takes advantage of gridless routing to gain more flexibility and a higher completion rate. The experimental results show that critical areas are effectively decreased by 21% on average while maintaining the routing completion rate over 99%.展开更多
As the technology scales advancing into the nanometer region,the concept of yield has become an increasingly important design metric.To reduce the yield loss caused by local defects,layout optimization can play a crit...As the technology scales advancing into the nanometer region,the concept of yield has become an increasingly important design metric.To reduce the yield loss caused by local defects,layout optimization can play a critical role.In this paper,we propose a new open sensitivity-based model with consideration of the blank space around the net,and study the corresponding net optimization.The proposed new model not only has a high practicability in the selection of nets to be optimized but also solves the issue of the increase in short critical area brought during the open optimization,which means to reduce the open critical area with no new short critical area produced,and thereby this model can ensure the decrease of total critical area and finally achieves an integrative optimization.Compared with the models available,the experimental results show that our sensitivity model not only consumes less time with concise algorithm but also can deal with irregular layout,which is out of the scope of other models.At the end of this paper,the effectiveness of the new model is verified by the experiment on the randomly selected five metal layers from the synthesized OpenSparc circuit layout.展开更多
Due to the importance of metal layers in the product yield,serpentine test structures are usually fabricated on test chips to extract parameters for yield prediction.In this paper,the confidence level and estimation p...Due to the importance of metal layers in the product yield,serpentine test structures are usually fabricated on test chips to extract parameters for yield prediction.In this paper,the confidence level and estimation precision of the average defect density on metal layers are investigated to minimize the randomness of experimental results and make the measured parameters more convincing.On the basis of the Poisson yield model,the method to determine the total area of all serpentine test structures is obtained using the law of large numbers and the Lindeberg-Levy theorem.Furthermore,the method to determine an adequate area of each serpentine test structure is proposed under a specific requirement of confidence level and estimation precision.The results of Monte Carlo simulation show that the proposed method is consistent with theoretical analyses.It is also revealed by wafer experimental results that the method of designing serpentine test structure proposed in this paper has better performance.展开更多
Physical defects have always played an important role in integrated circuit(IC)yields,and the design sensitivity to these physical elements has continued to increase in today’s nanometer technologies.The modeling of ...Physical defects have always played an important role in integrated circuit(IC)yields,and the design sensitivity to these physical elements has continued to increase in today’s nanometer technologies.The modeling of defect out-lines that exhibit a great variety of defect shapes is usually modeled as a circle,which causes the errors of critical area estimation.Since the outlines of 70%defects approximate to elliptical shapes,a novel yield model associated with elliptical outlines of defects is presented.This model is more general than the circular defects model as the latter is only an instance of the proposed model.Comparisons of the new and circular models in the experiment show that the new model can predict yield caused by real defects more accurately than what the circular model does,which is of significance for the prediction and improvement of the yield.展开更多
The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flo...The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flow field by using the Computational Fluid Dynamics (CFD) method. It is shown that the anticlockwise recirculation zone is formed in the standpipe, which affects the local head loss at the junction of the standpipe with the pipeline. The variation of the head loss coefficient at the junction is linearly related with the diameter ratio of the standpipe to the pipeline. The dimensionless recirculation flow rate is proportional to the square of the diameter ratio. Considering the effects of the recirculation zone, an empirical expression of the critical stability area is obtained. Comparing with the Thoma critical area, the area obtained by the present method is smaller, and the reduction depends on the diameter ratio and the ratio of the velocity head to the head losses in the tunnel. words:展开更多
文摘In current critical area models, it is generally assumed the defect outlines are circular and the conductors to be rectangle or the merger of rectangles. However, real defects and conductors associated with optimal layout design exhibit a great variety of shapes. Based on mathematical morphology, a new critical area model is presented, which can be used to estimate the critical area of short circuit, open circuit and pinhole. Based on the new model, the efficient validity check algorithms are explored to extract critical areas of short circuit, open circuit and pinhole from layouts. The results of experiment on an approximate layout of 4 × 4 shifts register show that the new model predicts the critical areas accurately. These results suggest that the proposed model and algorithm could provide new approaches for yield prediction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61173088 and 61070143)the 111 Project(Grant No.B08038)
文摘In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.
基金Foundation: National Natural Science Foundation of China, No.41171299, No.41171320, No.41401237
文摘Slope spectrum has been proved to be a significant methodology in revealing geomorphological features in the study of Chinese loess terrain. The determination of critical areas in deriving slope spectra is an indispensable task. Along with the increase in the size of the study area, the derived spectra are becoming more and more alike, such that their dif- ferences can be ignored in favor of a standard. Subsequently, the test size is defined as the Slope Spectrum Critical Area (SSCA). SSCA is not only the foundation of the slope spectrum calculation but also, to some extent, a reflection of geomorphological development of loess relief. High resolution DEMs are important in extracting the slope spectrum. A set of 48 DEMs with different landform areas of the Loess Plateau in northern Shaanxi province was selected for the experiment. The spatial distribution of SSCA is investigated with a geo-statistical analysis method, resulting in values ranging from 6.18 km^2 to 35.1 km^2. Primary experimental results show that the spatial distribution of SSCA is correlated with the spatial distribution of the soil erosion intensity, to a certain extent reflecting the terrain complexity. The critical area of the slope spectrum presents a spatial variation trend of weak-strong-weak from north to south. Four terrain parameters, gully density, slope skewness, terrain driving force (Td) and slope of slope (SOS), were chosen as indicators. There exists a good exponential function relationship between SSCA and gully density, terrain driving force (Td) and SOS and a loga- rithmic function relationship between SSCA and slope skewness. Slope skewness increases, and gully density, terrain driving force and SOS decrease with increasing SSCA. SSCA can be utilized as a discriminating factor to identify loess landforms, in that spatial distributions of SSCA and the evolution of loess landforms are correlative. Following the evolution of a loess landform from tableland to gully-hilly region, this also proves that SSCA can represent the development degree of local landforms. The critical stable regions of the Loess Plateau represent the degree of development of loess landforms. Its chief significance is that the per- ception of stable areas can be used to determine the minimal geographical unit.
文摘As die size and complexity increase, accurate and efficient extraction of the critical area is essential for yield prediction. Aiming at eliminating the potential integration errors of the traditional shape shifting method, an improved shape shifting method is proposed for Manhattan layouts. By mathematical analyses of the relevance of critical areas to defect sizes, the critical area for all defect sizes is modeled as a piecewise quadratic polynomial function of defect size, which can be obtained by extracting critical area for some certain defect sizes. Because the improved method calculates critical areas for all defect sizes instead of several discrete values with traditional shape shifting method, it eliminates the integration error of the average critical area. Experiments on industrial layouts show that the improved shape shifting method can improve the accuracy of the average critical area calculation by 24.3% or reduce about 59.7% computational expense compared with the traditional method.
基金supported by Key Program of National Natural Science Foundation of China(Grant No. 41130744)China National Natural Science Foundation (Grant No. 40971165)State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau open Foundation(Grant No. 10501-1220)
文摘In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.
基金Supported by Science and Technology Project of Liaoning Province(2011228001)Doctoral Start-up Fund of Dalian Fisheries University(017207)
文摘[Objective]The paper was to formulate catchable size and total allowable catch of Sebastes schlegelii in Zhangzidao artificial reef area.[Method]Based on analysis of length-weight formula,body length and weight growth equations,and instantaneous mortality rate,the inflection age and critical age of weight growth were calculated,and the biomass of S.schlegelii in Zhangzidao artificial reef area was estimated.[Result]The growth equation of body length was Lt=412.5×[1-e^-0.21(t+0.65)]and the growth equation of body weight was Wt=1 734.2×[1-e^-0.21(t+0.65)]^2.92.The inflection age and critical age for weight growth of S.schlegelii were 4.45 and 4.82 a,respectively.The biomass in Zhangzidao artificial reef area was about 456.8 t.[Conclusion]For S.schlegelii flock in Zhangzidao artificial reef area,the catchable length was about 271.2-281.7 mm,the catchable weight as about 509.4-569.5 g,and the total allowable catch was about 60.43 t.
文摘In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a great variety of shapes. In this paper,a novel yield model is presented and the critical area model of short circuit is correspondingly provided. In comparison with the circular model corrently available, the new model takes the similarity shape to an original defect, the two-dimensional distributional characteristic of defects, the feature of a layout routing and the character of yield estimation into account. As for the aspect of prediction of yield, the experimental results show that the new model may predict the yield caused by real defects more accurately than the circular model does. It is significant that the yield is accurately estimated and improved using the proposed model.
基金Supported by National Key Technology Research and Development Program(2012BAD15B03)Special Fund for Agro-scientific Research in the Public Interest(201003014)~~
文摘Phosphorus index method is an effective method to assess the risk of phosphorus loss,identify the critical source areas and reasonably control the agricultural non-point source pollution.The researches on phosphorus index assessment method have been started earlier in foreign countries.Currently,phosphorus index assessment method has been widely used in the United States and European countries through continuous development and improvement.However,the domestic research on non-point source phosphorus pollution assessment has just started,and the phosphorus index method that is suitable for the characteristics of agriculture in China has not yet been established.This paper summarizes and analyzes systematically the related research advances in phosphorus index method at home and abroad,and illustrates the issues presented in phosphorus index method.In addition,the researches on and application of phosphorus index method in China are discussed.
基金the Knowledge Innovation Program,Chinese Academy of Sciences (KZCX2-YW-442)National Basic Research Program of China (2007CB407207)National Natural Science Foundation (40971236)
文摘Critical source areas (CSAs), characterized by severe soil erosion and high sediment yield, are considered to have a high priority for conservation. How to identify CSAs and assess the effectiveness of conservation practices is a key issue in site-specific watershed management. The Soil and Water Assessment Tool (SWAT) model is a useful tool for site-specific conservation practices design and several studies have attempted to identify CSAs based on watershed models. However, limited research has reported about the effectiveness of conservation practices targeting CSAs. The aim of this study was to assess the effectiveness of conservation pracrices targeted on CSAs using the SWAT model. CSA was firstly identified based on the 4-year average yearly erosion of each HRU. Appropriate soil conservation practices were then designed for the CSAs. A scenario with conservation practices for the whole watershed was also established as the contrasting counter parts scheme and then compared to the outcome of CSA-targeted conservation practices. The result shows that SWAT can accurately simulate sediment yield in the study area. CSAs were mainly located in slope farmland areas and steep gullies, coinciding with the distribution of land use and slope. The identified CSA covered 20% of the HRUs and contributed on average 44% of sediment yield. Conservation practices targeting CSAs had higher sediment reduction effectiveness (24 115 t km-2 y-1) than conservation practice covering the whole watershed (20 290 t km-2 y-1). Thus conservation practices targeting CSAs are more effective than broad conservation practices. We conclude that soil conservation practices focusing on CSAs do increase sediment reduction effectiveness. Targeting the placement of soil conservation practices based on the CSAs concept will assist water quality control in watersheds.
文摘In the existing models of estimating the yield and critical area, the defect outline is usually assumed to be circular, but the observed real defect outlines are irregular in shape. In this paper, estimation of the yield and critical area is made using the Monte Carlo technique and the relationship between the errors of yield estimated by circular defect and the rectangle degree of the defect is analysed. The rectangular model of a real defect is presented, and the yield model is provided correspondingly. The models take into account an outline similar to that of an original defect, the characteristics of two-dimensional distribution of defects, the feature of a layout routing, and the character of yield estimation. In order to make the models practicable, the critical area computations related to rectangular defect and regular (vertical or horizontal) routing are discussed. The critical areas associated with rectangular defect and non- regular routing are developed also, based on the mathematical morphology. The experimental results show that the new yield model may predict the yield caused by real defects more accurately than the circular model. It is significant that the yield is accurately estimated using the proposed model for IC metals.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173088 and 61070143)the Programme of Introducing Talents of Discipline to Universities (Grant No. B08038)
文摘For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yield loss caused by redundancy material defects, the choice of nets to be optimized at first is an important step in the process of layout optimization. This paper provides a new sensitivity model for a short net, which is net-based and reflects the size of the critical area between a single net and the nets around it. Since this model is based on a single net and includes the information of the surrounding nets, the critical area between the single net and surrounding nets can be reduced at the same time. In this way, the efficiency of layout optimization becomes higher. According to experimental observations~ this sensitivity model can be used to choose the position for optimization. Compared with the chip-area-based and basic- layout-based sensitivity models, our sensitivity model not only has higher efficiency, but also confirms that choosing the net to be optimized at first improves the design.
基金supported by the National Key R&D Program of China(No.2016YFC1100300)he National Natural Science Foundation of China(Nos.21961160721 and 21704018).
文摘Cell adhesion to extracellular matrices(ECM)is critical to physiological and pathological processes as well as biomedical and biotechnological applications.It has been known that a cell can adhere on an adhesive microisland only over a critical size.But no publication has concerned critical adhesion areas of cells on microislands with nanoarray decoration.Herein,we fabricated a series of micro-nanopatterns with different microisland sizes and arginine-glycine-aspartate(RGD)nanospacings on a nonfouling poly(ethylene glycol)background.Besides reproducing that nanospacing of RGD,a ligand of its receptor integrin(a membrane protein),significantly influences specific cell adhesion on bioactive nanoarrays,we confirmed that the concept of critical adhesion area originally suggested in studies of cells on micropatterns was justified also on the micro-nanopatterns,yet the latter exhibited more characteristic behaviors of cell adhesion.We found increased critical adhesion areas of human mesenchymal stem cells(hMSCs)on nanoarrayed microislands with increased RGD nanospacings.However,the numbers of nanodots with respect to the critical adhesion areas were not a constant.A unified interpretation was then put forward after combining nonspecific background adhesion and specific cell adhesion.We further carried out the asymptotic analysis of a series of micro-nanopatterned surfaces to obtain the effective RGD nanospacing on unpatterned free surfaces with densely grafted RGD,which could be estimated nonzero but has never been revealed previously without the assistance of the micro-nanopatterning techniques and the corresponding analysis.
文摘By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deeply. but also got the crilicaldepth of plastic softening area of chamber that is valuable in the controlling engineering of rockburst. the chamber displacement jump and energy liberation have been derived. the influence of rock parameters on the rockburst has been discussed .
文摘In existing integrated circuit (IC) fabrication methods,the yield is typically limited by defects generated in the manufacturing process.In fact,the yield often shows a good correlation with the type and density of the defect.As a result,an accurate defect limited yield model is essential for accurate correlation analysis and yield prediction.Since real defects exhibit a great variety of shapes,to ensure the accuracy of yield prediction,it is necessary to select the most appropriate defect model and to extract the critical area based on the defect model.Considering the realistic outline of scratches introduced by the chemical mechanical polishing (CMP) process,we propose a novel scratch-concerned yield model.A linear model is introduced to model scratches.Based on the linear model,the related critical area extraction algorithm and defect density distribution are discussed.Owing to higher correspondence with the realistic outline of scratches,the linear defect model enables a more accurate yield prediction caused by scratches and results in a more accurate total product yield prediction as compared to the traditional circular model.
基金Supported by the National Natural Science Foundation of China(NSFC)under Grant No.60476014.
文摘A new gridless router to improve the yield of IC layout is presented. The improvement of yield is achieved by reducing the critical areas where the circuit failures are likely to happen. This gridless area router benefits from a novel cost function to compute critical areas during routing process, and heuristically lays the patterns on the chip area where it is less possible to induce critical area. The router also takes other objectives into consideration, such as routing completion rate and nets length. It takes advantage of gridless routing to gain more flexibility and a higher completion rate. The experimental results show that critical areas are effectively decreased by 21% on average while maintaining the routing completion rate over 99%.
基金Project supported in part by the National Natural Science Foundation of China(No.61173088)the Science & Technology Program of Xi’an,China(No.CX12485)the 111 Project(No.B08038)
文摘As the technology scales advancing into the nanometer region,the concept of yield has become an increasingly important design metric.To reduce the yield loss caused by local defects,layout optimization can play a critical role.In this paper,we propose a new open sensitivity-based model with consideration of the blank space around the net,and study the corresponding net optimization.The proposed new model not only has a high practicability in the selection of nets to be optimized but also solves the issue of the increase in short critical area brought during the open optimization,which means to reduce the open critical area with no new short critical area produced,and thereby this model can ensure the decrease of total critical area and finally achieves an integrative optimization.Compared with the models available,the experimental results show that our sensitivity model not only consumes less time with concise algorithm but also can deal with irregular layout,which is out of the scope of other models.At the end of this paper,the effectiveness of the new model is verified by the experiment on the randomly selected five metal layers from the synthesized OpenSparc circuit layout.
基金Project (No. 2009ZX02023-004-1) supported by the National Science and Technology Major Project,China
文摘Due to the importance of metal layers in the product yield,serpentine test structures are usually fabricated on test chips to extract parameters for yield prediction.In this paper,the confidence level and estimation precision of the average defect density on metal layers are investigated to minimize the randomness of experimental results and make the measured parameters more convincing.On the basis of the Poisson yield model,the method to determine the total area of all serpentine test structures is obtained using the law of large numbers and the Lindeberg-Levy theorem.Furthermore,the method to determine an adequate area of each serpentine test structure is proposed under a specific requirement of confidence level and estimation precision.The results of Monte Carlo simulation show that the proposed method is consistent with theoretical analyses.It is also revealed by wafer experimental results that the method of designing serpentine test structure proposed in this paper has better performance.
基金supported by the Hi-Tech Research and Development Program of China(No.2003AA1Z2163).
文摘Physical defects have always played an important role in integrated circuit(IC)yields,and the design sensitivity to these physical elements has continued to increase in today’s nanometer technologies.The modeling of defect out-lines that exhibit a great variety of defect shapes is usually modeled as a circle,which causes the errors of critical area estimation.Since the outlines of 70%defects approximate to elliptical shapes,a novel yield model associated with elliptical outlines of defects is presented.This model is more general than the circular defects model as the latter is only an instance of the proposed model.Comparisons of the new and circular models in the experiment show that the new model can predict yield caused by real defects more accurately than what the circular model does,which is of significance for the prediction and improvement of the yield.
基金supported by the National Natural Science Foundation of China(Grant No.51079050)the Doctoral Innovation Foundation in Jiangsu Province(Grant No.2017-B0803338)
文摘The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flow field by using the Computational Fluid Dynamics (CFD) method. It is shown that the anticlockwise recirculation zone is formed in the standpipe, which affects the local head loss at the junction of the standpipe with the pipeline. The variation of the head loss coefficient at the junction is linearly related with the diameter ratio of the standpipe to the pipeline. The dimensionless recirculation flow rate is proportional to the square of the diameter ratio. Considering the effects of the recirculation zone, an empirical expression of the critical stability area is obtained. Comparing with the Thoma critical area, the area obtained by the present method is smaller, and the reduction depends on the diameter ratio and the ratio of the velocity head to the head losses in the tunnel. words: