A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothe...A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.展开更多
The thermal decomposition behavior of composite modified double-base(CMDB) propellant containing cyclotrimethylene trinitramine(RDX) was studied via a Calvet microcalorimeter at five different heating rates. The a...The thermal decomposition behavior of composite modified double-base(CMDB) propellant containing cyclotrimethylene trinitramine(RDX) was studied via a Calvet microcalorimeter at five different heating rates. The activation energy(E) and the pre-exponential factor(A) of two obvious exothermic processes were obtained by Kissinger's method and Ozawa's method. The entropy of activation(△S^≠), the enthalpy of activation(△H^≠), and the free energy of activation(△G^≠) of the first stage were calculated. To evaluate the thermal hazard of the RDX-CMDB propellant, the critical temperature of thermal explosion(Tb), the self acceleration decomposition temperature(Tsgox), the adiabatic decomposition temperature increment(ATad) and the time-to-explosion of adiabatic system(t) were presented as 145.3 ℃, 138.15 ℃, 1634 K and 583.71 s(n=0) and 586.28 s(n=1), respectively.展开更多
基金We are grateful to the National Natural Science Foundation of China (No. 20573098)
文摘A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.
基金Supported by the National Natural Science Foundation of China(No.20573098)the Science and Technology Foundation of the National Defense Key Laboratory of Propellant and Explosive Combustion in China(No.9140C3501020901)
文摘The thermal decomposition behavior of composite modified double-base(CMDB) propellant containing cyclotrimethylene trinitramine(RDX) was studied via a Calvet microcalorimeter at five different heating rates. The activation energy(E) and the pre-exponential factor(A) of two obvious exothermic processes were obtained by Kissinger's method and Ozawa's method. The entropy of activation(△S^≠), the enthalpy of activation(△H^≠), and the free energy of activation(△G^≠) of the first stage were calculated. To evaluate the thermal hazard of the RDX-CMDB propellant, the critical temperature of thermal explosion(Tb), the self acceleration decomposition temperature(Tsgox), the adiabatic decomposition temperature increment(ATad) and the time-to-explosion of adiabatic system(t) were presented as 145.3 ℃, 138.15 ℃, 1634 K and 583.71 s(n=0) and 586.28 s(n=1), respectively.