The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be cha...The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be changed periodically with the lattice matching of the inner and outer tubes by using atomistic models with energy minimization method.If the coincidence length between the inner and outer tubes is long enough,the restoring force cannot drive the DWCNT to slide over the vdW potential barrier to assure the DWCNT acts as an oscillator.The critical coincidence lengths of the oscillators are predicted by a very simple equation and then confirmed with energy minimization method for both the zigzag/zigzag system and the armchair/armchair system.The critical length of the armchair/armchair system is much larger than that of the zigzag/zigzag system.The vdW potential energy fluctuation of the armchair/armchair system is weaker than that of the zigzag/zigzag system.So it is easier to slide over the barrier for the armchair/armchair system.The critical lengths of zigzag/zigzag DWCNTbased oscillator are found increasing along with temperature,by molecular dynamics simulations.展开更多
This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume me...This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume method(FVM) and volume of fluid(VOF) method are adopted to simulate the flow field around the pipeline.The pressure distribution along the sandy bed surface is obtained by considering the variation of water surface.Furthermore,the effects of water depth,unidirectional and bidirectional impermeable plates on pressure difference are discussed.The seepage flow field of sandy bed near underwater pipeline is numerically simulated using the laminar and porous media model.On this basis,the effect of the impermeable plate length on hydraulic gradient is investigated and the critical length of impermeable plate is obtained.The simulated results show that when the water depth is smaller than 5.00D(D is the diameter of pipeline),the effect of the water depth on the pressure difference is remarkable.The pressure differences between two endpoints of both the unidirectional and bidirectional plates decrease with the increase of the plate length.The variations of the pressure differences for both the unidirectional and bidirectional plates are similar.With the increase of plate length,the hydraulic gradient decreases and the piping at the seepage exit is avoided effectively as long as it reaches a certain length.Such a critical length of the plate decreases with the increase of the water depth.When water depth is larger than 4.00D,the effect of the water depth on the critical length is small.For the same water depth,the critical length of impermeable plate increases with the increase of the dimensionless flow parameter.Numerical simulation results are in good agreement with the available experimental measurements.展开更多
In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method ...In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.展开更多
Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the ...Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the wet lay-up of fabric. Interfacial bond failure modes have attracted the attention of researchers because of the importance. The objective of the present study is to analyse the interface failure mechanism of reinforced concrete continuous beam strength-ened by FRP. An analytical solution has been firstly presented to predict the entire debonding process of the model. The realistic bi-linear bond-slip interfacial law was adopted to study this problem. The crack propagation process of the loaded model was divided into four stages (elastic,elastic-softening,elastic-softening-debonded and softening-debonded stage). Among them,elastic-softening-debonded stage has four sub-stages. The equations are solved by adding suitable stress and displacement boundary conditions. Finally,critical value of bond length is determined to make the failure mechanism in the paper effective by solving the simultaneously linear algebraic equations. The interaction between the upper and lower FRP plates can be neglected if axial stiffness ratio of the concrete-to-plate prism is large enough.展开更多
In this paper, the initial boundary value problem of semilinear degenerate reaction-diffusion systems is studied. The regularization method and upper and lower solutions technique are employed to show the existence an...In this paper, the initial boundary value problem of semilinear degenerate reaction-diffusion systems is studied. The regularization method and upper and lower solutions technique are employed to show the existence and continuation of a positive classical solution. The location of quenching points is found. The critical length is estimated by the eigenvalue method.展开更多
The paper presents rather some conclusions from large investigations over dynamic behaviour of bridges under travelling loads. There, as basic tool was applied the 3D-Time Space Method (3D-TSM) in edition proposed by ...The paper presents rather some conclusions from large investigations over dynamic behaviour of bridges under travelling loads. There, as basic tool was applied the 3D-Time Space Method (3D-TSM) in edition proposed by present author. The method uses four-dimensional space, where besides of usual 3D space, the time is the fourth dimension. The bridge with simply supported steel girder is here modelled by means of theory for thin-walled bars (TWBs). In final calculations, solutions are obtained here on numerical way applying well known and simple Finite Differences Method (FDM). In consequence the task is brought to trivial determination of unknowns from set of linear algebraic equations. There, essential part of these equations is so called dynamical stiffness matrix (DSM). The last is additionally tested by Uniform Criterion (...) for evaluation of bridges Critical States (CrS).展开更多
The photoperiodic control of flowering time is essential for the adaptation of plants to variable environments and for successful reproduction. The identification of genes encoding florigens, which had been elusive bu...The photoperiodic control of flowering time is essential for the adaptation of plants to variable environments and for successful reproduction. The identification of genes encoding florigens, which had been elusive but were supposedly synthesized in leaves and then transmitted to shoot apices to induce floral transitions, has greatly advanced our understanding of the photoperiodic regulation of flowering. Studies on the photoperiodism of Arabidopsis, a model long-day plant, revealed the molecular mechanisms regulating the expression of the Arabidopsis florigen gene FT, which is gradually induced in response to increase in day length. By contrast, in rice, a model short-day plant, the expression of the florigen gene Hd3a (an FTortholog in rice) is regulated in an on/off fashion, with strong induction under short-day conditions and repression under long-day conditions. This critical day length dependence of Hd3a expression enables rice to recognize a slight change in the photoperiod as a trigger to initiate floral induction. Rice possesses a second florigen gene, RFT1, which can be expressed to induce floral transition under non-inductive long-day conditions. The complex transcriptional regulation of florigen genes and the resulting precise control over flowering time provides rice with the adaptability required for a crop species of increasing global importance.展开更多
In this paper, the driving forces at a pile top are considered as a periodic load during driving and the Mathieu equation is derived. From the stability charts of this equation, we can obtain the critical length of th...In this paper, the driving forces at a pile top are considered as a periodic load during driving and the Mathieu equation is derived. From the stability charts of this equation, we can obtain the critical length of the pile, and the effect of skin friction upon the critical length is discussed.展开更多
A physical model has been constructed to represent the condensate film pattern on a horizontal downward- facing surface with fins,which is based on visual observation in experiment.The results of analysis using this m...A physical model has been constructed to represent the condensate film pattern on a horizontal downward- facing surface with fins,which is based on visual observation in experiment.The results of analysis using this model confirms the validity of the critical wave length formula obtained from Rayleigh-Taylor stability analysis. This formula may be used as a criterion to design horizontal downward-facing surfaces with fins that can best destabilize the condensate film,thus enhancing condensation heat transfer.展开更多
Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of ...Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of load carrying cruciform joints inships is investigated using Effective Notch Stress (ENS) approach. A fictitious notch of 1 mm radius is introduced at theweld root and toe and fatigue stress is evaluated. The effect of weld leg length (l) and weld penetration depth (p) on ENS atweld root and toe are determined. The critical weld leg length (lcr) at which fatigue failure transitions from weld root toweld toe is investigated. An approximation formula for determination of the critical weld leg length considering weldpenetration depth (p) is proposed.展开更多
Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events...Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events are accompanied by a rapid stress drop/rise due to the formation/vanishing of do- main fronts. From a thermodynamic point of view, both are instability phenomena that occur once the system reaches its critical state. This paper investigates the stability of a shrink- ing cylindrical domain in a tube configuration during unload- ing. The energetics and thermodynamic driving force of the cylindrical domain are quantified by using an elastic inclu- sion model. It is demonstrated that the two domain fronts ex- hibit strong interaction when they come close to each other, which brings a peak in the total energy and a sign change in the thermodynamic driving force. It is proved that such domain front interaction plays an important role in control- ling the stability of the domain and in the occurrence of stress jumps during domain vanishing. It is also shown that the pro- cess is governed by two nondimensional length scales (the normalized tube length and normalized wall-thickness) and that the length scale dependence of the critical domain length and stress jump for the domain vanishing can be quantified by the elastic inclusion model.展开更多
The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alt...The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alternative approach for theoretically dealing with chemical dissolution front (CDF) propagation in fluid-saturated carbonate rocks. Note that the CDF is represented by the porosity front in this study. In this new approach, the porosity, pore-fluid velocity and acid concentration are directly used as independent variables. To illustrate how to use the present new approach, an aeidization dissolution system (ADS) consisting of carbonate rocks, which belongs to one of the many general chemical dissolution systems (CDSs), is taken as an application example. When the acid dissolution capacity (ADC) number (that is defined as the ratio of the volume of the carbonate rock dissolved by an acid to that of the acid) approaches zero, the present new approach can be used to obtain analytical solutions for the stable ADS. However, if the ADC number is a nonzero finite number, then numerical solutions can be only obtained for the ADS, especially when the ADS is in an unstable state. The related theoretical results have demonstrated that: (1) When the ADS is in a stable state and in the case of the ADC number approaching zero, the present new approach is mathematically equivalent to the previous approach, in which the porosity, pore-fluid pressure and acid concentration are used as independent variables. However, when the ADS is in an unstable state, the use of the present new approach leads to a free parameter that needs to be determined by some other ways. (2) The existence of a non-step-type dissolution front within a transient region should at least satisfy that none of the ADC number, injected acid velocity and reciprocal of the dissolution reaction rate is equal to zero in the stable ADS.展开更多
When using the draft-tube vacuum to be less than 8.0 m as the rule to set atailrace surge tank, a mixing function that describes the process of water-hammer vacuum andvelocity-head vacuum varied with time is proposed,...When using the draft-tube vacuum to be less than 8.0 m as the rule to set atailrace surge tank, a mixing function that describes the process of water-hammer vacuum andvelocity-head vacuum varied with time is proposed, on the assumption that the guide vane of thehydraulic turbine and the turbine discharge were all changed linearly. An exact maximum of thedraft-tube vacuum for the first-phase water-hammer and the last-phase water-hammer is obtained.Finally a much more reasonable formula of critical tailrace length is derived. The results of twocases show that the formula proposed can determine correctly and reasonably whether a tail-racesurge tank is needed or not, and are more suitable for project design than the formula suggested bythe specification.展开更多
基金Supported in part by the National Natural Science Foundation of China(11072108)the Foundation for the Author of National Excellent Doctoral Dissertation of China(201028)+3 种基金the Program for New Century Excellent Talents in University(NCET-11-0832)the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ13-0144)the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ13-03)the Fundamental Research Funds for the Central Universities of China
文摘The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be changed periodically with the lattice matching of the inner and outer tubes by using atomistic models with energy minimization method.If the coincidence length between the inner and outer tubes is long enough,the restoring force cannot drive the DWCNT to slide over the vdW potential barrier to assure the DWCNT acts as an oscillator.The critical coincidence lengths of the oscillators are predicted by a very simple equation and then confirmed with energy minimization method for both the zigzag/zigzag system and the armchair/armchair system.The critical length of the armchair/armchair system is much larger than that of the zigzag/zigzag system.The vdW potential energy fluctuation of the armchair/armchair system is weaker than that of the zigzag/zigzag system.So it is easier to slide over the barrier for the armchair/armchair system.The critical lengths of zigzag/zigzag DWCNTbased oscillator are found increasing along with temperature,by molecular dynamics simulations.
基金supported by the National Natural Science Foundation of China(Grant No.51279189)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2008AA09Z309)China Scholarship Council and University of Aberdeen
文摘This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume method(FVM) and volume of fluid(VOF) method are adopted to simulate the flow field around the pipeline.The pressure distribution along the sandy bed surface is obtained by considering the variation of water surface.Furthermore,the effects of water depth,unidirectional and bidirectional impermeable plates on pressure difference are discussed.The seepage flow field of sandy bed near underwater pipeline is numerically simulated using the laminar and porous media model.On this basis,the effect of the impermeable plate length on hydraulic gradient is investigated and the critical length of impermeable plate is obtained.The simulated results show that when the water depth is smaller than 5.00D(D is the diameter of pipeline),the effect of the water depth on the pressure difference is remarkable.The pressure differences between two endpoints of both the unidirectional and bidirectional plates decrease with the increase of the plate length.The variations of the pressure differences for both the unidirectional and bidirectional plates are similar.With the increase of plate length,the hydraulic gradient decreases and the piping at the seepage exit is avoided effectively as long as it reaches a certain length.Such a critical length of the plate decreases with the increase of the water depth.When water depth is larger than 4.00D,the effect of the water depth on the critical length is small.For the same water depth,the critical length of impermeable plate increases with the increase of the dimensionless flow parameter.Numerical simulation results are in good agreement with the available experimental measurements.
文摘In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.
基金supported by the Scheme of Science and Technology of Guangdong Province (2005B32801002), China
文摘Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the wet lay-up of fabric. Interfacial bond failure modes have attracted the attention of researchers because of the importance. The objective of the present study is to analyse the interface failure mechanism of reinforced concrete continuous beam strength-ened by FRP. An analytical solution has been firstly presented to predict the entire debonding process of the model. The realistic bi-linear bond-slip interfacial law was adopted to study this problem. The crack propagation process of the loaded model was divided into four stages (elastic,elastic-softening,elastic-softening-debonded and softening-debonded stage). Among them,elastic-softening-debonded stage has four sub-stages. The equations are solved by adding suitable stress and displacement boundary conditions. Finally,critical value of bond length is determined to make the failure mechanism in the paper effective by solving the simultaneously linear algebraic equations. The interaction between the upper and lower FRP plates can be neglected if axial stiffness ratio of the concrete-to-plate prism is large enough.
文摘In this paper, the initial boundary value problem of semilinear degenerate reaction-diffusion systems is studied. The regularization method and upper and lower solutions technique are employed to show the existence and continuation of a positive classical solution. The location of quenching points is found. The critical length is estimated by the eigenvalue method.
文摘The paper presents rather some conclusions from large investigations over dynamic behaviour of bridges under travelling loads. There, as basic tool was applied the 3D-Time Space Method (3D-TSM) in edition proposed by present author. The method uses four-dimensional space, where besides of usual 3D space, the time is the fourth dimension. The bridge with simply supported steel girder is here modelled by means of theory for thin-walled bars (TWBs). In final calculations, solutions are obtained here on numerical way applying well known and simple Finite Differences Method (FDM). In consequence the task is brought to trivial determination of unknowns from set of linear algebraic equations. There, essential part of these equations is so called dynamical stiffness matrix (DSM). The last is additionally tested by Uniform Criterion (...) for evaluation of bridges Critical States (CrS).
文摘The photoperiodic control of flowering time is essential for the adaptation of plants to variable environments and for successful reproduction. The identification of genes encoding florigens, which had been elusive but were supposedly synthesized in leaves and then transmitted to shoot apices to induce floral transitions, has greatly advanced our understanding of the photoperiodic regulation of flowering. Studies on the photoperiodism of Arabidopsis, a model long-day plant, revealed the molecular mechanisms regulating the expression of the Arabidopsis florigen gene FT, which is gradually induced in response to increase in day length. By contrast, in rice, a model short-day plant, the expression of the florigen gene Hd3a (an FTortholog in rice) is regulated in an on/off fashion, with strong induction under short-day conditions and repression under long-day conditions. This critical day length dependence of Hd3a expression enables rice to recognize a slight change in the photoperiod as a trigger to initiate floral induction. Rice possesses a second florigen gene, RFT1, which can be expressed to induce floral transition under non-inductive long-day conditions. The complex transcriptional regulation of florigen genes and the resulting precise control over flowering time provides rice with the adaptability required for a crop species of increasing global importance.
文摘In this paper, the driving forces at a pile top are considered as a periodic load during driving and the Mathieu equation is derived. From the stability charts of this equation, we can obtain the critical length of the pile, and the effect of skin friction upon the critical length is discussed.
文摘A physical model has been constructed to represent the condensate film pattern on a horizontal downward- facing surface with fins,which is based on visual observation in experiment.The results of analysis using this model confirms the validity of the critical wave length formula obtained from Rayleigh-Taylor stability analysis. This formula may be used as a criterion to design horizontal downward-facing surfaces with fins that can best destabilize the condensate film,thus enhancing condensation heat transfer.
文摘Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of load carrying cruciform joints inships is investigated using Effective Notch Stress (ENS) approach. A fictitious notch of 1 mm radius is introduced at theweld root and toe and fatigue stress is evaluated. The effect of weld leg length (l) and weld penetration depth (p) on ENS atweld root and toe are determined. The critical weld leg length (lcr) at which fatigue failure transitions from weld root toweld toe is investigated. An approximation formula for determination of the critical weld leg length considering weldpenetration depth (p) is proposed.
基金supported by the Hong Kong Research Grants Council (GRF619511)the National Natural Science Foundation of China (11128204)
文摘Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events are accompanied by a rapid stress drop/rise due to the formation/vanishing of do- main fronts. From a thermodynamic point of view, both are instability phenomena that occur once the system reaches its critical state. This paper investigates the stability of a shrink- ing cylindrical domain in a tube configuration during unload- ing. The energetics and thermodynamic driving force of the cylindrical domain are quantified by using an elastic inclu- sion model. It is demonstrated that the two domain fronts ex- hibit strong interaction when they come close to each other, which brings a peak in the total energy and a sign change in the thermodynamic driving force. It is proved that such domain front interaction plays an important role in control- ling the stability of the domain and in the occurrence of stress jumps during domain vanishing. It is also shown that the pro- cess is governed by two nondimensional length scales (the normalized tube length and normalized wall-thickness) and that the length scale dependence of the critical domain length and stress jump for the domain vanishing can be quantified by the elastic inclusion model.
基金supported by the National Natural Science Foundation of China(Grant No.11272359)
文摘The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alternative approach for theoretically dealing with chemical dissolution front (CDF) propagation in fluid-saturated carbonate rocks. Note that the CDF is represented by the porosity front in this study. In this new approach, the porosity, pore-fluid velocity and acid concentration are directly used as independent variables. To illustrate how to use the present new approach, an aeidization dissolution system (ADS) consisting of carbonate rocks, which belongs to one of the many general chemical dissolution systems (CDSs), is taken as an application example. When the acid dissolution capacity (ADC) number (that is defined as the ratio of the volume of the carbonate rock dissolved by an acid to that of the acid) approaches zero, the present new approach can be used to obtain analytical solutions for the stable ADS. However, if the ADC number is a nonzero finite number, then numerical solutions can be only obtained for the ADS, especially when the ADS is in an unstable state. The related theoretical results have demonstrated that: (1) When the ADS is in a stable state and in the case of the ADC number approaching zero, the present new approach is mathematically equivalent to the previous approach, in which the porosity, pore-fluid pressure and acid concentration are used as independent variables. However, when the ADS is in an unstable state, the use of the present new approach leads to a free parameter that needs to be determined by some other ways. (2) The existence of a non-step-type dissolution front within a transient region should at least satisfy that none of the ADC number, injected acid velocity and reciprocal of the dissolution reaction rate is equal to zero in the stable ADS.
文摘When using the draft-tube vacuum to be less than 8.0 m as the rule to set atailrace surge tank, a mixing function that describes the process of water-hammer vacuum andvelocity-head vacuum varied with time is proposed, on the assumption that the guide vane of thehydraulic turbine and the turbine discharge were all changed linearly. An exact maximum of thedraft-tube vacuum for the first-phase water-hammer and the last-phase water-hammer is obtained.Finally a much more reasonable formula of critical tailrace length is derived. The results of twocases show that the formula proposed can determine correctly and reasonably whether a tail-racesurge tank is needed or not, and are more suitable for project design than the formula suggested bythe specification.