Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
In this paper we deal with the existence of infinitely many critical points of the even functional I(u)=integral from n=Q to (F(x,u,Du))+integral from n=(?)Q to (G(x,u)), u∈W^(1,p)(Ω),where G(x, u)=integral from n=o...In this paper we deal with the existence of infinitely many critical points of the even functional I(u)=integral from n=Q to (F(x,u,Du))+integral from n=(?)Q to (G(x,u)), u∈W^(1,p)(Ω),where G(x, u)=integral from n=o to u (g(x,t)dt), under the weak structure conditions on F(x, u, q) by the Mountain Pass Lemma.展开更多
In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypers...In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypersurfaces F(x) with degenerate critical points and proves that [F(x)](+)(lambda) is a distribution-valued meromorphic of lambda is an element of C under some assumptions on F(x). Next, the authors use the Normal form theory of Arnold and prove that for a hypersurface F(x) = 0 with A(mu) type degenerate critical point at x = 0, F-+(lambda) is a distribution-valued meromorphic function of lambda.展开更多
In this paper foe bifurcation of critical points for the quadratic systems of type(II)and (III) is investigated. and an answer to the problem given in[1] is given.
Suppose A,B and C are the bounded linear operators on a Hilbert space H, when A has a generalized inverse A - such that (AA -) *=AA - and B has a generalized inverse B - such that (B -B) *=B -B,the general cha...Suppose A,B and C are the bounded linear operators on a Hilbert space H, when A has a generalized inverse A - such that (AA -) *=AA - and B has a generalized inverse B - such that (B -B) *=B -B,the general characteristic forms for the critical points of the map F p:X→‖ A X B-C ‖ p p (1<p<∞), have been obtained, it is a generalization for P J Maher's result about p=2. Similarly, the same question has been discussed for several operators.展开更多
One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the...One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the change of certain topological invariant.A new gapless semimetallic state emerges at each topological quantum critical point.Here we perform a renormalization group analysis to investigate the stability of such critical points against perturbations induced by random scalar potential and random vector potential.We find that the quantum critical point between double-Weyl semimetal and band insulator is unstable and can be easily turned into a compressible diffusive metal by any type of weak disorder.The quantum critical point between triple-Weyl semimetal and band insulator flows to a stable strong-coupling fixed point if the system contains a random vector potential merely along the z-axis,but becomes a compressible diffusive metal when other types of disorders exist.展开更多
We study the global qualitative properties of the well-known Kukles systems (1) below. Firstly, the number of critical points in case (1) has a center or a fine focus.
In order to provide a reference for the further study of microbial contamination in the pork production process. Microbial contamination of pigs came from three slaughterhouses were detected, and critical control poin...In order to provide a reference for the further study of microbial contamination in the pork production process. Microbial contamination of pigs came from three slaughterhouses were detected, and critical control points in the progress of hog slaughter and processing were analyzed. The results showed that microbial con- taminatian existed in the entire slaughter and processing progress, including shower and assassination bloodletting, separation of the internal organs, chopping boards, workshop environment, personal hygiene of the operators, etc. , which should be paid more attention to. The results indicated that reasonable protection measures should be carried out, disinfection awareness of the operators should be improved, and regular disinfection should be ruled under the condition of continu- ous operation.展开更多
The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of th...The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of the quantum critical regime can be difficult on a classical computer due to its intrinsic complexity.Herein,we propose a variational approach,which minimizes the variational free energy,to simulate and locate the quantum critical regime on a quantum computer.The variational quantum algorithm adopts an ansatz by performing an unitary operator on a product of a single-qubit mixed state,in which the entropy can be analytically obtained from the initial state,and thus the free energy can be accessed conveniently.With numeral simulation,using the one-dimensional Kitaev model as a demonstration we show that the quantum critical regime can be identified by accurately evaluating the temperature crossover line.Moreover,the dependencies of both the correlation length and the phase coherence time with temperature are evaluated for the thermal states.Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.展开更多
Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, p...Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.展开更多
In this paper, we consider the problem of existence as well as multiplicity results for a bi-harmonic equation under the Navier boundary conditions: △2 u = K(x)u p , u 〉 0 in Ω , △u = u = 0 on Ω , where Ω is ...In this paper, we consider the problem of existence as well as multiplicity results for a bi-harmonic equation under the Navier boundary conditions: △2 u = K(x)u p , u 〉 0 in Ω , △u = u = 0 on Ω , where Ω is a smooth domain in R n , n 5, and p + 1 = 2 n n 4 is the critical Sobolev exponent. We obtain highlightly a new criterion of existence, which provides existence results for a dense subset of positive functions, and generalizes Bahri-Coron type criterion in dimension six. Our argument gives also estimates on the Morse index of the obtained solutions and extends some known results. Moreover, it provides, for generic K, Morse inequalities at infinity, which delivers lower bounds for the number of solutions. As further applications of this Morse theoretical approach, we prove more existence results.展开更多
This paper is concerned with the harmonic equation(P;) : ?u = 0, u > 0 in B;and ?u/?ν+((n-2)/2)u =((n-2)/2) Ku;on S;where B;is the unit ball in R;, n ≥ 4 with Euclidean metric g;, ?B;= S;is its boundary, K is...This paper is concerned with the harmonic equation(P;) : ?u = 0, u > 0 in B;and ?u/?ν+((n-2)/2)u =((n-2)/2) Ku;on S;where B;is the unit ball in R;, n ≥ 4 with Euclidean metric g;, ?B;= S;is its boundary, K is a function on S;and ε is a small positive parameter. We construct solutions of the subcritical equation(P;) which blow up at one critical point of K. We give also a sufficient condition on the function K to ensure the nonexistence of solutions for(P;) which blow up at one point. Finally, we prove a nonexistence result of single peaked solutions for the supercritical equation(P;).展开更多
Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform i...Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform into paramagnetic substances. Below the Curie temperature, a material remains ferromagnetic;above it, the material becomes paramagnetic, with its magnetic field easily influenced by external magnetic fileds. For example, the Curie temperature of iron (Fe) is 1043 K, while that of neodymium magnets ranges from 583 to 673 K. From both physics and mathematics perspectives, examining the temperature properties of materials is essential, as it provides valuable insights into their electromagnetic and thermodynamic behaviors. This paper makes a bold assumption and, for the first time, carefully verifies the existence of a Casimir temperature at 0.00206 K under conditions of one-atomic spacing.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value ...In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.展开更多
In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equatio...In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equations with negative parameter which arose from the study of self-channeling of high-power ultrashort laser in matter.展开更多
The performance of supercritical fluid (SCF) as a solvent can be greatly affected by addition of anentrainer to the system. In this study, a constant volume visual method is used to measure the critical point ofCO2+n-...The performance of supercritical fluid (SCF) as a solvent can be greatly affected by addition of anentrainer to the system. In this study, a constant volume visual method is used to measure the critical point ofCO2+n-butyraldehyde, CO2+ i-butyraldehyde and CO2+alcohol binary systems and CO2+entrainer+trisodiumsalt of tri-(m-sulfonphenyl)phosphine (TPPTS) ternary systems, which provides us good theoretical basis for super-critical extraction and chemical reaction. The relationship between critical point and concentration of the entrainerare discussed. The phase behavior of binary system and that of ternary system are compared. The relationshipbetween the concentration of TPPTS and critical point of binary systems are also discussed.展开更多
Nitrogen injection under conditions close vicinity of the liquid-gas critical point is studied numerically. The fluid thermodynamic and transport properties vary drasti- cally and exhibit anomalies in the near-critica...Nitrogen injection under conditions close vicinity of the liquid-gas critical point is studied numerically. The fluid thermodynamic and transport properties vary drasti- cally and exhibit anomalies in the near-critical regime. These anomalies can cause distinctive effects on heat-transfer and fluid-flow characteristics. To focus on the influence of ther- modynamics on the flow field, a relatively low injection Reynolds number of 1 750 is adopted. For comparisons, a reference case with the same configuration and Reynolds number is simulated in the ideal gas regime. The model accommodates full conservation laws, real-fluid thermody- namic and transport phenomena. Results reveal that the flow features of the near-critical fluid jet are significantly differ- ent from their counterpart. The near-critical fluid jet spreads faster and mixes more efficiently with the ambient fluid along with a more rapidly development of the vortex pairing pro- cess. Detailed analysis at different streamwise locations in- cluding both the flat shear-layer region and fully developed vortex region reveals the important effect of volume dilata- tion and baroclinic torque in the near-critical fluid case. The former disturbs the shear layer and makes it more unstable. The volume dilatation and baroclinic effects strengthen the vorticity and stimulate the vortex rolling up and pairing pro- cess展开更多
We study the critical scaling and dynamical signatures of fractionalized excitations at two different deconfined quantum critical points(DQCPs)in an S=1/2 spin chain using the time evolution of infinite matrix product...We study the critical scaling and dynamical signatures of fractionalized excitations at two different deconfined quantum critical points(DQCPs)in an S=1/2 spin chain using the time evolution of infinite matrix product states.The scaling of the correlation functions and the dispersion of the conserved current correlations explicitly show the emergence of enhanced continuous symmetries at these DQCPs.The dynamical structure factors in several different channels reveal the development of deconfined fractionalized excitations at the DQCPs.Furthermore,we find an effective spin-charge separation at the DQCP between the ferromagnetic(FM)and valence bond solid(VBS)phases,and identify two continua associated with different types of fractionalized excitations at the DQCP between the X-direction and Z-direction FM phases.Our findings not only provide direct evidence for the DQCP in one dimension but also shed light on exploring the DQCP in higher dimensions.展开更多
This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ...This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ is the spectrum of the operator -△-μI/|x|2 with zero Dirichlet boundary condition, 0 <μ< μ-,μ-=(N-2)2/4, f(x,u)is an asymmetric lower order perturbation of |u|2* -1 at infinity. Using the dual variational methods, the existence of nontrivial solutions is proved.展开更多
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
文摘In this paper we deal with the existence of infinitely many critical points of the even functional I(u)=integral from n=Q to (F(x,u,Du))+integral from n=(?)Q to (G(x,u)), u∈W^(1,p)(Ω),where G(x, u)=integral from n=o to u (g(x,t)dt), under the weak structure conditions on F(x, u, q) by the Mountain Pass Lemma.
文摘In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypersurfaces F(x) with degenerate critical points and proves that [F(x)](+)(lambda) is a distribution-valued meromorphic of lambda is an element of C under some assumptions on F(x). Next, the authors use the Normal form theory of Arnold and prove that for a hypersurface F(x) = 0 with A(mu) type degenerate critical point at x = 0, F-+(lambda) is a distribution-valued meromorphic function of lambda.
文摘In this paper foe bifurcation of critical points for the quadratic systems of type(II)and (III) is investigated. and an answer to the problem given in[1] is given.
文摘Suppose A,B and C are the bounded linear operators on a Hilbert space H, when A has a generalized inverse A - such that (AA -) *=AA - and B has a generalized inverse B - such that (B -B) *=B -B,the general characteristic forms for the critical points of the map F p:X→‖ A X B-C ‖ p p (1<p<∞), have been obtained, it is a generalization for P J Maher's result about p=2. Similarly, the same question has been discussed for several operators.
基金the Natural Science Foundation of Anhui Province,China(Grant No.2208085MA11)the National Natural Science Foundation of China(Grants Nos.11974356,12274414,and U1832209)。
文摘One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the change of certain topological invariant.A new gapless semimetallic state emerges at each topological quantum critical point.Here we perform a renormalization group analysis to investigate the stability of such critical points against perturbations induced by random scalar potential and random vector potential.We find that the quantum critical point between double-Weyl semimetal and band insulator is unstable and can be easily turned into a compressible diffusive metal by any type of weak disorder.The quantum critical point between triple-Weyl semimetal and band insulator flows to a stable strong-coupling fixed point if the system contains a random vector potential merely along the z-axis,but becomes a compressible diffusive metal when other types of disorders exist.
基金Project supported by the Natural Science Foundation of China.
文摘We study the global qualitative properties of the well-known Kukles systems (1) below. Firstly, the number of critical points in case (1) has a center or a fine focus.
文摘In order to provide a reference for the further study of microbial contamination in the pork production process. Microbial contamination of pigs came from three slaughterhouses were detected, and critical control points in the progress of hog slaughter and processing were analyzed. The results showed that microbial con- taminatian existed in the entire slaughter and processing progress, including shower and assassination bloodletting, separation of the internal organs, chopping boards, workshop environment, personal hygiene of the operators, etc. , which should be paid more attention to. The results indicated that reasonable protection measures should be carried out, disinfection awareness of the operators should be improved, and regular disinfection should be ruled under the condition of continu- ous operation.
基金supported by the National Natural Science Foundation of China(Grant No.12005065)the Guangdong Basic and Applied Basic Research Fund(Grant No.2021A1515010317)。
文摘The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of the quantum critical regime can be difficult on a classical computer due to its intrinsic complexity.Herein,we propose a variational approach,which minimizes the variational free energy,to simulate and locate the quantum critical regime on a quantum computer.The variational quantum algorithm adopts an ansatz by performing an unitary operator on a product of a single-qubit mixed state,in which the entropy can be analytically obtained from the initial state,and thus the free energy can be accessed conveniently.With numeral simulation,using the one-dimensional Kitaev model as a demonstration we show that the quantum critical regime can be identified by accurately evaluating the temperature crossover line.Moreover,the dependencies of both the correlation length and the phase coherence time with temperature are evaluated for the thermal states.Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
基金supported by the National Natural Science Foundation of China (Grant No.40874052)the Key Laboratory of Geo-detection (China University of Geosciences,Beijing),Ministry of Education
文摘Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.
文摘In this paper, we consider the problem of existence as well as multiplicity results for a bi-harmonic equation under the Navier boundary conditions: △2 u = K(x)u p , u 〉 0 in Ω , △u = u = 0 on Ω , where Ω is a smooth domain in R n , n 5, and p + 1 = 2 n n 4 is the critical Sobolev exponent. We obtain highlightly a new criterion of existence, which provides existence results for a dense subset of positive functions, and generalizes Bahri-Coron type criterion in dimension six. Our argument gives also estimates on the Morse index of the obtained solutions and extends some known results. Moreover, it provides, for generic K, Morse inequalities at infinity, which delivers lower bounds for the number of solutions. As further applications of this Morse theoretical approach, we prove more existence results.
基金the Deanship of Scientific Research at Taibah University on material and moral support in the financing of this research project
文摘This paper is concerned with the harmonic equation(P;) : ?u = 0, u > 0 in B;and ?u/?ν+((n-2)/2)u =((n-2)/2) Ku;on S;where B;is the unit ball in R;, n ≥ 4 with Euclidean metric g;, ?B;= S;is its boundary, K is a function on S;and ε is a small positive parameter. We construct solutions of the subcritical equation(P;) which blow up at one critical point of K. We give also a sufficient condition on the function K to ensure the nonexistence of solutions for(P;) which blow up at one point. Finally, we prove a nonexistence result of single peaked solutions for the supercritical equation(P;).
文摘Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform into paramagnetic substances. Below the Curie temperature, a material remains ferromagnetic;above it, the material becomes paramagnetic, with its magnetic field easily influenced by external magnetic fileds. For example, the Curie temperature of iron (Fe) is 1043 K, while that of neodymium magnets ranges from 583 to 673 K. From both physics and mathematics perspectives, examining the temperature properties of materials is essential, as it provides valuable insights into their electromagnetic and thermodynamic behaviors. This paper makes a bold assumption and, for the first time, carefully verifies the existence of a Casimir temperature at 0.00206 K under conditions of one-atomic spacing.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
基金Supported by NSFC(11326127,11101335)NWNULKQN-11-23the Fundamental Research Funds for the Gansu Universities
文摘In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.
基金supported by NSF of China(11201488),supported by NSF of China(11371146)Hunan Provincial Natural Science Foundation of China(14JJ4002)
文摘In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equations with negative parameter which arose from the study of self-channeling of high-power ultrashort laser in matter.
基金Supported by the National Natural Science Foundation of China (No. 20076004) and the Doctoral Program Foundation of the Institution of Higher Education of China (No. 2000001005).
文摘The performance of supercritical fluid (SCF) as a solvent can be greatly affected by addition of anentrainer to the system. In this study, a constant volume visual method is used to measure the critical point ofCO2+n-butyraldehyde, CO2+ i-butyraldehyde and CO2+alcohol binary systems and CO2+entrainer+trisodiumsalt of tri-(m-sulfonphenyl)phosphine (TPPTS) ternary systems, which provides us good theoretical basis for super-critical extraction and chemical reaction. The relationship between critical point and concentration of the entrainerare discussed. The phase behavior of binary system and that of ternary system are compared. The relationshipbetween the concentration of TPPTS and critical point of binary systems are also discussed.
基金supported in part by the National Natural Science Foundation of China (11132010 and 11072236)
文摘Nitrogen injection under conditions close vicinity of the liquid-gas critical point is studied numerically. The fluid thermodynamic and transport properties vary drasti- cally and exhibit anomalies in the near-critical regime. These anomalies can cause distinctive effects on heat-transfer and fluid-flow characteristics. To focus on the influence of ther- modynamics on the flow field, a relatively low injection Reynolds number of 1 750 is adopted. For comparisons, a reference case with the same configuration and Reynolds number is simulated in the ideal gas regime. The model accommodates full conservation laws, real-fluid thermody- namic and transport phenomena. Results reveal that the flow features of the near-critical fluid jet are significantly differ- ent from their counterpart. The near-critical fluid jet spreads faster and mixes more efficiently with the ambient fluid along with a more rapidly development of the vortex pairing pro- cess. Detailed analysis at different streamwise locations in- cluding both the flat shear-layer region and fully developed vortex region reveals the important effect of volume dilata- tion and baroclinic torque in the near-critical fluid case. The former disturbs the shear layer and makes it more unstable. The volume dilatation and baroclinic effects strengthen the vorticity and stimulate the vortex rolling up and pairing pro- cess
基金Project supported by the National Science Foundation of China(Grant No.12174441)the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Remnin University of China(Grant No.18XNLG24)。
文摘We study the critical scaling and dynamical signatures of fractionalized excitations at two different deconfined quantum critical points(DQCPs)in an S=1/2 spin chain using the time evolution of infinite matrix product states.The scaling of the correlation functions and the dispersion of the conserved current correlations explicitly show the emergence of enhanced continuous symmetries at these DQCPs.The dynamical structure factors in several different channels reveal the development of deconfined fractionalized excitations at the DQCPs.Furthermore,we find an effective spin-charge separation at the DQCP between the ferromagnetic(FM)and valence bond solid(VBS)phases,and identify two continua associated with different types of fractionalized excitations at the DQCP between the X-direction and Z-direction FM phases.Our findings not only provide direct evidence for the DQCP in one dimension but also shed light on exploring the DQCP in higher dimensions.
文摘This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ is the spectrum of the operator -△-μI/|x|2 with zero Dirichlet boundary condition, 0 <μ< μ-,μ-=(N-2)2/4, f(x,u)is an asymmetric lower order perturbation of |u|2* -1 at infinity. Using the dual variational methods, the existence of nontrivial solutions is proved.