A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical po...A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.展开更多
Similar reservoir sandbodies and fault conduit systems in the sandstone reservoirs in the middle Es3 member of the Niuzhuang Sag have been problematic for a long time. The following problems remain unsolved: 1) The ...Similar reservoir sandbodies and fault conduit systems in the sandstone reservoirs in the middle Es3 member of the Niuzhuang Sag have been problematic for a long time. The following problems remain unsolved: 1) The distribution of sandstone porosity is inconsistent with the hydrocarbon accumulation. The oil sandstones have low porosity instead of high porosity. 2) Sandstones, which have the same properties, have different levels of oiliness, and the sandstones with almost the same properties show different degrees of oil-bearing capacity. This study analyzes the condition of reservoirs in the research area during the accumulation period in terms of paleoporosity estimation and discusses the critical porosity of the sandstone reservoirs during the same period. The following conclusions can be drawn from the results. 1) Although reservoir properties are low at present and some reservoirs have become tight, the paleoporosity ranging from 18% to 25% is greater than the critical porosity of 13.9%. As the: loss of porosity is different in terms of burial history, the present porosity cannot reflect porosity during the accumulation period. Similar/y, high porosity during the accumulation period does not indicate that tbe present porosity is high. 2) The present reservoir location is consistent with the distribution of high paleoporosity during the accumulation period. This result indicates that high porosity belts are prone to hydrocarbon accumulation because of the dominant migration pathways generated as a result of property discrepancies under similar fault conduit conditions. Consequently, the hydrocarbon mainly accumulates in high porosity belts. Paleoporosity during the accumulation period is found to be a vital controlling factor. Therefore, high paleoporosity sandstones in the middle Es3 member of the Niuzhuang Sag have great potential for future exploration.展开更多
Carbonate,tight sandstone,and shale reservoirs have many pore types,and the relationship between the porosity and elastic parameters is extremely discrete due to the complex pore shape.This paper presents a method for...Carbonate,tight sandstone,and shale reservoirs have many pore types,and the relationship between the porosity and elastic parameters is extremely discrete due to the complex pore shape.This paper presents a method for predicting reservoir pore types based on pore shape substitution.The pore shape substitution allows for accurately characterizing the changes in the elastic properties of the rock with the changes in pore shape,assuming there are no changes in terms of minerals,porosity,or fl uids.By employing a multiple-porosity variable critical porosity model,the eff ective pore aspect ratio could be inverted from the velocities of the rock.To perform pore shape substitution,we could replace the eff ective pore aspect ratio with another pore aspect ratio or increase/decrease the volume content of diff erent pore shapes.The reservoir pore types could be evaluated by comparing the differences in the reservoir velocities before and after the substitution of the pore shape.The test results pertaining to the theoretical model and the well logging data indicated that the pore shape substitution method could be applied to characterize pore types in terms of separating the eff ects of the pore shapes from the eff ects of the minerals,porosity,or fl uids on the velocities.展开更多
基金sponsored by Important National Science and Technology Specifi c Projects of China (No.2011ZX05001)
文摘A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.
基金supported by the Young Scholars Development Fund of SWPU
文摘Similar reservoir sandbodies and fault conduit systems in the sandstone reservoirs in the middle Es3 member of the Niuzhuang Sag have been problematic for a long time. The following problems remain unsolved: 1) The distribution of sandstone porosity is inconsistent with the hydrocarbon accumulation. The oil sandstones have low porosity instead of high porosity. 2) Sandstones, which have the same properties, have different levels of oiliness, and the sandstones with almost the same properties show different degrees of oil-bearing capacity. This study analyzes the condition of reservoirs in the research area during the accumulation period in terms of paleoporosity estimation and discusses the critical porosity of the sandstone reservoirs during the same period. The following conclusions can be drawn from the results. 1) Although reservoir properties are low at present and some reservoirs have become tight, the paleoporosity ranging from 18% to 25% is greater than the critical porosity of 13.9%. As the: loss of porosity is different in terms of burial history, the present porosity cannot reflect porosity during the accumulation period. Similar/y, high porosity during the accumulation period does not indicate that tbe present porosity is high. 2) The present reservoir location is consistent with the distribution of high paleoporosity during the accumulation period. This result indicates that high porosity belts are prone to hydrocarbon accumulation because of the dominant migration pathways generated as a result of property discrepancies under similar fault conduit conditions. Consequently, the hydrocarbon mainly accumulates in high porosity belts. Paleoporosity during the accumulation period is found to be a vital controlling factor. Therefore, high paleoporosity sandstones in the middle Es3 member of the Niuzhuang Sag have great potential for future exploration.
基金the National Natural Science Foundation of China(Nos.42074136,41674130)National Key S&T Special Project of China(No.2016ZX05027-004-001)the Fundamental Research Funds for the Central University(No.18CX02061A).
文摘Carbonate,tight sandstone,and shale reservoirs have many pore types,and the relationship between the porosity and elastic parameters is extremely discrete due to the complex pore shape.This paper presents a method for predicting reservoir pore types based on pore shape substitution.The pore shape substitution allows for accurately characterizing the changes in the elastic properties of the rock with the changes in pore shape,assuming there are no changes in terms of minerals,porosity,or fl uids.By employing a multiple-porosity variable critical porosity model,the eff ective pore aspect ratio could be inverted from the velocities of the rock.To perform pore shape substitution,we could replace the eff ective pore aspect ratio with another pore aspect ratio or increase/decrease the volume content of diff erent pore shapes.The reservoir pore types could be evaluated by comparing the differences in the reservoir velocities before and after the substitution of the pore shape.The test results pertaining to the theoretical model and the well logging data indicated that the pore shape substitution method could be applied to characterize pore types in terms of separating the eff ects of the pore shapes from the eff ects of the minerals,porosity,or fl uids on the velocities.