BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from...BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from coronavirus disease 2019(COVID-19).There is a paucity of data from the Middle East assessing the post-ICU discharge mental health status of patients who had COVID-19.AIM To evaluate anxiety and depression among patients who had severe COVID-19.METHODS This is a prospective single-center follow-up questionnaire-based study of adults who were admitted to the ICU or under ICU consultation for>24 h for COVID-19.Eligible patients were contacted via telephone.The patient’s anxiety and depression six months after ICU discharge were assessed using the Hospital Anxiety and Depression Scale(HADS).The primary outcome was the mean HADS score.The secondary outcomes were risk factors of anxiety and/or depression.RESULTS Patients who were admitted to the ICU because of COVID-19 were screened(n=518).Of these,48 completed the questionnaires.The mean age was 56.3±17.2 years.Thirty patients(62.5%)were male.The main comorbidities were endocrine(n=24,50%)and cardiovascular(n=21,43.8%)diseases.The mean overall HADS score for anxiety and depression at 6 months post-ICU discharge was 11.4(SD±8.5).A HADS score of>7 for anxiety and depression was detected in 15 patients(30%)and 18 patients(36%),respectively.Results from the multivariable ordered logistic regression demonstrated that vasopressor use was associated with the development of anxiety and depression[odds ratio(OR)39.06,95% confidence interval:1.309-1165.8;P<0.05].CONCLUSION Six months after ICU discharge,30% of patients who had COVID-19 demonstrated a HADS score that confirmed anxiety and depression.To compare the psychological status of patients following an ICU admission(with vs without COVID-19),further studies are warranted.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an ext...In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.展开更多
Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it canno...Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena.展开更多
We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of th...We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of the quantum critical point.A double peak at the gap edge plus a dip feature at zero-bias has been observed on the PCAR spectra,indicative of the presence of a nodeless gap in BaFe_(2)(As_(0.7)P_(0.3))_(2).Detailed analysis within a sophisticated theoretical model reveals an anisotropic gap with deep gap minima.The PCARs also feature additional structures related to the electron-bosonic coupling mode.Using the extracted superconducting energy gap value,a characteristic bosonic energy Ω_(b) and its temperature dependence are obtained,comparable with the spin-resonance energy observed in neutron scattering experiment.These results indicate a magnetism-driven quantum critical point in the BaFe_(2)(As_(1-x)P_(x))_(2) system.展开更多
Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearit...Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons.By exploiting quantum critical behavior,we propose a powerful scheme to control the power-harvesting efficiency in the microwave regime,where the driven-dissipative optical system acts as an energy pump.It drives electron transport against a load in the quantum-dot circuit.The energy transfer and,consequently,the harvesting efficiency are enhanced near the critical point.As the critical point moves towards to low input power,high efficiency within experimental parameters is achieved.Our results complement fundamental studies of photon-to-electron conversion at the nanoscale and provide practical guidance for designs of integrated photoelectric devices through quantum criticality.展开更多
Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypog...Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypoglycemia,classified as level 1 hypoglycemia,is defined by blood glucose levels below 70 mg/dL and can be effectively addressed through carbohydrate intake.Severe hypoglycemia,denoted by blood glucose levels less than 54 mg/dL,poses a life-threatening risk if left untreated.Individuals with type 1 and type 2 diabetes undergoing insulin treatment are particularly susceptible to hypoglycemia due to impaired counterregulatory mechanisms.展开更多
Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the ...Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.展开更多
Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispo...Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispositions, do not guarantee success in the workplace, because Critical Thinking Dispositions (CTD) are important elements of intellectual reasoning that simulate a person towards using the CT skills. Therefore, nursing educational programs should promote lifelong learning rather than focusing on transferring the content of nursing knowledge only. And for this purpose, quality education is the key. Education should focus on teaching from diverse perspectives, incorporating various teaching learning strategies that are congruent with the modern era. Purpose: The purpose of this study is to explore critical thinking dispositions among final year Baccalaureate Nursing students of various military colleges of nursing, in Pakistan. Methodology: A descriptive qualitative exploratory study design was used to investigate the CTD of BSc final year nursing students. The study population included twelve willing nursing students, from six military colleges across the country. Demographic information and consent was taken from the participants of the study. In-depth interviews, through a semi structured interview guide, and probes were used to obtain data related to personal experiences of CTD amongst the nursing students. Results: Data analysis showed two broad themes: 1) Perceptions of CT, and 2) Experiences of CT dispositions. In theme one, the emerging category was: Clarity of CT;whereas in theme two, the categories that emerged were: a) Truth Seeking, b) Open Mindedness, c) Inquisitiveness, and d) Self Organization. Conclusion: The findings of the study revealed positive dispositions towards truth seeking, open mindedness, and self-organization, whereas disposition towards inquisitiveness was weak. Self-confidence and maturity also emerged as positive factors that the students possessed. This study recommends that faculty and learners should extend their concept of CTD, and emphasizes its application in daily routine. Additionally, faculty should modify their instructional strategies and focus on the cultivation of dispositions of inquisitiveness, curiosity, and allow questioning by students in the class.展开更多
In this paper,a contention-based connection-free transmission scheme is proposed to meet the stringent requirements of ultra-reliability and low-latency for critical machine-type communication(cMTC).To improve reliabi...In this paper,a contention-based connection-free transmission scheme is proposed to meet the stringent requirements of ultra-reliability and low-latency for critical machine-type communication(cMTC).To improve reliability,we design multiple independent sparse orthogonal pilots(MISOP)to significantly reduce the probability of pilot collision to the order of 10^(−5).Besides,the advancements of massive MIMO(mMIMO)are exploited to further enhance the reliability.To achieve low latency,connection-free slot-based one-shot transmission without retransmissions is adopted.On the receiver side,single round of multi-user detection(MUD)without interference cancellation(IC)can reduce the processing delay.The imprecise synchronization between cMTC device and the gNB in connection-free transmission,e.g.,time and frequency offsets,are also considered.The simulation results shows that the proposed scheme can well satisfy the ambitious requirements of cMTC,and has the potential applications in supporting massive cMTC devices in 6G.展开更多
Iron is a double-edged sword!Despite being essential for numerous physiological processes of the body,a dysregulated iron metabolism can result in tissue da-mage,exaggerated inflammatory response,and increased suscept...Iron is a double-edged sword!Despite being essential for numerous physiological processes of the body,a dysregulated iron metabolism can result in tissue da-mage,exaggerated inflammatory response,and increased susceptibility to infection with certain pathogens that thrive in iron-rich environment.During sepsis,there is an alteration of iron metabolism,leading to increased transport and uptake into cells.This increase in labile iron may cause oxidative damage and cellular injury(ferroptosis)which progresses as the disease worsens.Critically ill patients are often complicated with systemic inflammation which may contribute to multiple organ dysfunction syndrome or sepsis,a common cause of mortality in intensive care unit.Originally,ferritin was known to play an important role in the hematopoietic system for its iron storage capacity.Recently,its role has emerged as a predictor of poor prognosis in chronic inflammation and critical illnesses.Apart from predicting the disease outcome,serum ferritin can poten-tially reflect disease activity as well.展开更多
The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics ...The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available.Here,comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr_(1.04)Te_(2) crystals.Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior.Specifically,the critical exponents β=0.2399,γ=0.859,and δ=4.3498,as well as the Curie temperature T_(C)=249.56 K,are determined using various methods,including the modified Arrott plots,the Kouvel-Fisher method,the Widom scaling method,and the critical isotherm analysis.These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr_(1.04)Te_(2.A magnetic phase diagram with tricritical phenomenon is thus constructed.Further investigations confirm that the critical exponents obtained conform to the scalar equation near T_(C),indicating their self-consistency and reliability.Our work sheds light on the magnetic properties of quasi-2D Cr_(1.04)Te_(2),broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.展开更多
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,...In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.展开更多
This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼7...This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼75k compounds is utilized for pretraining,followed by fine-tuning with a smaller Critical Temperature(T_(c))dataset containing∼300 compounds.Comparatively,there is a significant improvement in the performance of the transfer learning model over the traditional deep learning(DL)model in predicting Tc.Subsequently,the transfer learning model is applied to predict the properties of approximately 150k compounds.Predictions are validated computationally using density functional theory(DFT)calculations based on lattice dynamics-related theory.Moreover,to demonstrate the extended predictive capability of the transfer learning model for new materials,a pool of virtual compounds derived from prototype crystal structures from the Materials Project(MP)database is generated.T_(c) predictions are obtained for∼3600 virtual compounds,which underwent screening for electroneutrality and thermodynamic stability.An Extra Trees-based model is trained to utilize E_(hull)values to obtain thermodynamically stable materials,employing a dataset containing Ehull values for approximately 150k materials for training.Materials with Ehull values exceeding 5 meV/atom were filtered out,resulting in a refined list of potential Mg-based superconductors.This study showcases the effectiveness of transfer learning in predicting superconducting properties and highlights its potential for accelerating the discovery of Mg-based materials in the field of superconductivity.展开更多
This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patie...This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings.展开更多
Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effe...Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.展开更多
In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)...In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)in R^(N),(0.1)where N≥4,2≤p<2^(*),2_α^(*)=(2N-α)/(N-2)with 0<α<4,λ>0,μ∈R,A(x)=(A_(1)(x),A_(2)(x),…,A_(N)(x))is a real local Hölder continuous vector function,i is the imaginary unit,and V(x)is a real valued potential function on R^(N).Supposing thatΩ=int V^(-1)(0)■R^(N)is bounded,we show that problem(0.1)possesses at least cat_(Ω)(Ω)nontrivial solutions ifλis large.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
BACKGROUND This study adopts a descriptive phenomenological approach to investigate the facilitators and barriers of community nurses'abilities in managing critical and emergency conditions.With the transition of ...BACKGROUND This study adopts a descriptive phenomenological approach to investigate the facilitators and barriers of community nurses'abilities in managing critical and emergency conditions.With the transition of healthcare systems to the community,the evolution of nursing practices,and the attention from policies and practices,community nurses play a crucial role in the management of critical and emergency conditions.However,there is still a lack of comprehensive understanding regarding the factors that promote or hinder their capabilities in this area.AIM To understand the facilitators and barriers of community nurses in managing critical and emergency conditions,exploring the fundamental reasons and driving forces influencing their treatment capabilities.METHODS This study utilized the destination sampling method between May 2023 and July 2023.It employed a descriptive phenomenological approach within qualitative research methodologies.Through objective sampling,17 community nurses from 7 communities in Changning District,Shanghai,were selected as the study subjects.Semi-structured interviews were conducted to gather data,which were subsequently organized and analyzed using Colaizzi's seven-step analysis method,leading to the extraction of final themes.RESULTS The barrier factors identified from the interviews encompassed three topics:resource allocation,professional factors,and personal literacy.The facilitators comprised three themes:professionalism,management attention,and training and continuing education.We identified that the root causes of the barriers included the lack of practical treatment experience among community nurses,insufficient awareness of self-directed learning,and limited knowledge and technical proficiency.The professional quality of community nurses and management attention serve as motivation for them to enhance their treatment abilities.CONCLUSION To enhance the capability of community nurses in treating acute and critical patients,it is recommended to bolster training specifically tailored to acute and critical care,raise awareness of first aid practices,and elevate knowledge and skill levels.展开更多
基金the Researchers Supporting Project number,King Saud University,Riyadh,Saudi Arabia,No.RSPD2024R919.
文摘BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from coronavirus disease 2019(COVID-19).There is a paucity of data from the Middle East assessing the post-ICU discharge mental health status of patients who had COVID-19.AIM To evaluate anxiety and depression among patients who had severe COVID-19.METHODS This is a prospective single-center follow-up questionnaire-based study of adults who were admitted to the ICU or under ICU consultation for>24 h for COVID-19.Eligible patients were contacted via telephone.The patient’s anxiety and depression six months after ICU discharge were assessed using the Hospital Anxiety and Depression Scale(HADS).The primary outcome was the mean HADS score.The secondary outcomes were risk factors of anxiety and/or depression.RESULTS Patients who were admitted to the ICU because of COVID-19 were screened(n=518).Of these,48 completed the questionnaires.The mean age was 56.3±17.2 years.Thirty patients(62.5%)were male.The main comorbidities were endocrine(n=24,50%)and cardiovascular(n=21,43.8%)diseases.The mean overall HADS score for anxiety and depression at 6 months post-ICU discharge was 11.4(SD±8.5).A HADS score of>7 for anxiety and depression was detected in 15 patients(30%)and 18 patients(36%),respectively.Results from the multivariable ordered logistic regression demonstrated that vasopressor use was associated with the development of anxiety and depression[odds ratio(OR)39.06,95% confidence interval:1.309-1165.8;P<0.05].CONCLUSION Six months after ICU discharge,30% of patients who had COVID-19 demonstrated a HADS score that confirmed anxiety and depression.To compare the psychological status of patients following an ICU admission(with vs without COVID-19),further studies are warranted.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
文摘In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20200737)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)+1 种基金the Innovation Research Project of Jiangsu Province(Grant No.JSSCBS20210521)the China Postdoctoral Science Foundation(Grant No.2022M721693)。
文摘Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena.
基金supported by the National Natural Science Foundation of China(Grant Nos.11774303 and 11574373)the National Key Research and Development Program of China(Grant Nos.2022YFA1403402,2021YFA1400401,and 2020YFA0406003)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB33000000 and GJTD-2020-01)financial support from the Joint Fund of Yunnan Provincial Science and Technology Department(Grant No.2019FY003008)。
文摘We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of the quantum critical point.A double peak at the gap edge plus a dip feature at zero-bias has been observed on the PCAR spectra,indicative of the presence of a nodeless gap in BaFe_(2)(As_(0.7)P_(0.3))_(2).Detailed analysis within a sophisticated theoretical model reveals an anisotropic gap with deep gap minima.The PCARs also feature additional structures related to the electron-bosonic coupling mode.Using the extracted superconducting energy gap value,a characteristic bosonic energy Ω_(b) and its temperature dependence are obtained,comparable with the spin-resonance energy observed in neutron scattering experiment.These results indicate a magnetism-driven quantum critical point in the BaFe_(2)(As_(1-x)P_(x))_(2) system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12204405, 21873033, and 22273029)the Yunnan Fundamental Research Project (Grant Nos. 202301AT070108 and 202401AW070005)
文摘Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons.By exploiting quantum critical behavior,we propose a powerful scheme to control the power-harvesting efficiency in the microwave regime,where the driven-dissipative optical system acts as an energy pump.It drives electron transport against a load in the quantum-dot circuit.The energy transfer and,consequently,the harvesting efficiency are enhanced near the critical point.As the critical point moves towards to low input power,high efficiency within experimental parameters is achieved.Our results complement fundamental studies of photon-to-electron conversion at the nanoscale and provide practical guidance for designs of integrated photoelectric devices through quantum criticality.
基金generously supported by the faculty startup funds from Auburn University at Montgomery (to SSVPS)。
文摘Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypoglycemia,classified as level 1 hypoglycemia,is defined by blood glucose levels below 70 mg/dL and can be effectively addressed through carbohydrate intake.Severe hypoglycemia,denoted by blood glucose levels less than 54 mg/dL,poses a life-threatening risk if left untreated.Individuals with type 1 and type 2 diabetes undergoing insulin treatment are particularly susceptible to hypoglycemia due to impaired counterregulatory mechanisms.
基金supported by the Czech Ministry of Education,Youth and Sports(Project No.CZ.02.2.69/0.0/0.0/18_053/0016980)the Grant Agency of the Czech Republic(Grant No.GM23-05027M).
文摘Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.
文摘Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispositions, do not guarantee success in the workplace, because Critical Thinking Dispositions (CTD) are important elements of intellectual reasoning that simulate a person towards using the CT skills. Therefore, nursing educational programs should promote lifelong learning rather than focusing on transferring the content of nursing knowledge only. And for this purpose, quality education is the key. Education should focus on teaching from diverse perspectives, incorporating various teaching learning strategies that are congruent with the modern era. Purpose: The purpose of this study is to explore critical thinking dispositions among final year Baccalaureate Nursing students of various military colleges of nursing, in Pakistan. Methodology: A descriptive qualitative exploratory study design was used to investigate the CTD of BSc final year nursing students. The study population included twelve willing nursing students, from six military colleges across the country. Demographic information and consent was taken from the participants of the study. In-depth interviews, through a semi structured interview guide, and probes were used to obtain data related to personal experiences of CTD amongst the nursing students. Results: Data analysis showed two broad themes: 1) Perceptions of CT, and 2) Experiences of CT dispositions. In theme one, the emerging category was: Clarity of CT;whereas in theme two, the categories that emerged were: a) Truth Seeking, b) Open Mindedness, c) Inquisitiveness, and d) Self Organization. Conclusion: The findings of the study revealed positive dispositions towards truth seeking, open mindedness, and self-organization, whereas disposition towards inquisitiveness was weak. Self-confidence and maturity also emerged as positive factors that the students possessed. This study recommends that faculty and learners should extend their concept of CTD, and emphasizes its application in daily routine. Additionally, faculty should modify their instructional strategies and focus on the cultivation of dispositions of inquisitiveness, curiosity, and allow questioning by students in the class.
基金supported by the Key-Area Research and Development Program of Guangdong Province under Grant 2019B010157002the National Key Research and Development Program of China under grant 2020YFB1807202.
文摘In this paper,a contention-based connection-free transmission scheme is proposed to meet the stringent requirements of ultra-reliability and low-latency for critical machine-type communication(cMTC).To improve reliability,we design multiple independent sparse orthogonal pilots(MISOP)to significantly reduce the probability of pilot collision to the order of 10^(−5).Besides,the advancements of massive MIMO(mMIMO)are exploited to further enhance the reliability.To achieve low latency,connection-free slot-based one-shot transmission without retransmissions is adopted.On the receiver side,single round of multi-user detection(MUD)without interference cancellation(IC)can reduce the processing delay.The imprecise synchronization between cMTC device and the gNB in connection-free transmission,e.g.,time and frequency offsets,are also considered.The simulation results shows that the proposed scheme can well satisfy the ambitious requirements of cMTC,and has the potential applications in supporting massive cMTC devices in 6G.
文摘Iron is a double-edged sword!Despite being essential for numerous physiological processes of the body,a dysregulated iron metabolism can result in tissue da-mage,exaggerated inflammatory response,and increased susceptibility to infection with certain pathogens that thrive in iron-rich environment.During sepsis,there is an alteration of iron metabolism,leading to increased transport and uptake into cells.This increase in labile iron may cause oxidative damage and cellular injury(ferroptosis)which progresses as the disease worsens.Critically ill patients are often complicated with systemic inflammation which may contribute to multiple organ dysfunction syndrome or sepsis,a common cause of mortality in intensive care unit.Originally,ferritin was known to play an important role in the hematopoietic system for its iron storage capacity.Recently,its role has emerged as a predictor of poor prognosis in chronic inflammation and critical illnesses.Apart from predicting the disease outcome,serum ferritin can poten-tially reflect disease activity as well.
基金Project supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222170)Jiangsu Specially-Appointed Professor Program,and Natural Science Foundation of Universities of Jiangsu Province(Grant No.TJ219008)the support of the open research fund of Key Laboratory of Quantum Materials and Devices(Southeast University),Ministry of Education。
文摘The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available.Here,comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr_(1.04)Te_(2) crystals.Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior.Specifically,the critical exponents β=0.2399,γ=0.859,and δ=4.3498,as well as the Curie temperature T_(C)=249.56 K,are determined using various methods,including the modified Arrott plots,the Kouvel-Fisher method,the Widom scaling method,and the critical isotherm analysis.These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr_(1.04)Te_(2.A magnetic phase diagram with tricritical phenomenon is thus constructed.Further investigations confirm that the critical exponents obtained conform to the scalar equation near T_(C),indicating their self-consistency and reliability.Our work sheds light on the magnetic properties of quasi-2D Cr_(1.04)Te_(2),broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(No.U2341231)the National Natural Science Foundation of China(No.12172186)。
文摘In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.
文摘This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼75k compounds is utilized for pretraining,followed by fine-tuning with a smaller Critical Temperature(T_(c))dataset containing∼300 compounds.Comparatively,there is a significant improvement in the performance of the transfer learning model over the traditional deep learning(DL)model in predicting Tc.Subsequently,the transfer learning model is applied to predict the properties of approximately 150k compounds.Predictions are validated computationally using density functional theory(DFT)calculations based on lattice dynamics-related theory.Moreover,to demonstrate the extended predictive capability of the transfer learning model for new materials,a pool of virtual compounds derived from prototype crystal structures from the Materials Project(MP)database is generated.T_(c) predictions are obtained for∼3600 virtual compounds,which underwent screening for electroneutrality and thermodynamic stability.An Extra Trees-based model is trained to utilize E_(hull)values to obtain thermodynamically stable materials,employing a dataset containing Ehull values for approximately 150k materials for training.Materials with Ehull values exceeding 5 meV/atom were filtered out,resulting in a refined list of potential Mg-based superconductors.This study showcases the effectiveness of transfer learning in predicting superconducting properties and highlights its potential for accelerating the discovery of Mg-based materials in the field of superconductivity.
文摘This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings.
基金supported by the National Natural Science Foundation of China(No.52272198 and 52002122)the Project funded by China Postdoctoral Science Foundation(No.2021M690947).
文摘Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.
基金supported by the National Natural Science Foundation of China(12171212)。
文摘In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)in R^(N),(0.1)where N≥4,2≤p<2^(*),2_α^(*)=(2N-α)/(N-2)with 0<α<4,λ>0,μ∈R,A(x)=(A_(1)(x),A_(2)(x),…,A_(N)(x))is a real local Hölder continuous vector function,i is the imaginary unit,and V(x)is a real valued potential function on R^(N).Supposing thatΩ=int V^(-1)(0)■R^(N)is bounded,we show that problem(0.1)possesses at least cat_(Ω)(Ω)nontrivial solutions ifλis large.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金Supported by Key Joint Research Program of Scientific Research Project of Shanghai Changning District Health Commission in 2023,No.20234Y008.
文摘BACKGROUND This study adopts a descriptive phenomenological approach to investigate the facilitators and barriers of community nurses'abilities in managing critical and emergency conditions.With the transition of healthcare systems to the community,the evolution of nursing practices,and the attention from policies and practices,community nurses play a crucial role in the management of critical and emergency conditions.However,there is still a lack of comprehensive understanding regarding the factors that promote or hinder their capabilities in this area.AIM To understand the facilitators and barriers of community nurses in managing critical and emergency conditions,exploring the fundamental reasons and driving forces influencing their treatment capabilities.METHODS This study utilized the destination sampling method between May 2023 and July 2023.It employed a descriptive phenomenological approach within qualitative research methodologies.Through objective sampling,17 community nurses from 7 communities in Changning District,Shanghai,were selected as the study subjects.Semi-structured interviews were conducted to gather data,which were subsequently organized and analyzed using Colaizzi's seven-step analysis method,leading to the extraction of final themes.RESULTS The barrier factors identified from the interviews encompassed three topics:resource allocation,professional factors,and personal literacy.The facilitators comprised three themes:professionalism,management attention,and training and continuing education.We identified that the root causes of the barriers included the lack of practical treatment experience among community nurses,insufficient awareness of self-directed learning,and limited knowledge and technical proficiency.The professional quality of community nurses and management attention serve as motivation for them to enhance their treatment abilities.CONCLUSION To enhance the capability of community nurses in treating acute and critical patients,it is recommended to bolster training specifically tailored to acute and critical care,raise awareness of first aid practices,and elevate knowledge and skill levels.