With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced ...With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced surface engineering technologies as PVD coatings and duplex surface treatments in cold work dies has not been realized. In the present study, Crl2MoV steel has been surface engineered by single PVD Ti/TiN coating and duplex treatment combining low temperature plasma nitriding (LTPN) with PVD Ti/TiN coatings. The properties of Ti/TiN coatings in terms of surface morphology, microhardness, load bearing capacity, bonding strength and wear resistance were evaluated by microhardness, scratch and wear tests. The experimental results show that PVD Ti/TiN coatings can significantly enhance the surface load bearing capacity (especially for duplex treatments) and wear resistance of Crl2MoV steel by more than one order of magnitude. This can be mainly attributed to the hard and well-adherent PVD Ti/TiN surface coatings and strong mechanical support of the LTPN sublayer. While two-body abrasive wear prevails for uncoated Crl2MoV, the micropolishing action of the counterface dominates in surface engineered material.展开更多
导卫导轮的使用寿命是影响轧材尺寸精度的重要因素。通过550轧机生产φ70 mm 20CrMnTiH齿轮钢的实践,根据4种导轮用钢T8、Cr16Ni3、Cr12MoV、Cr23Ni5Mo的性能试验和不同热处理工艺对φ70 mm导轮使用寿命的影响,优选了Cr12MoV钢(/%:1.45...导卫导轮的使用寿命是影响轧材尺寸精度的重要因素。通过550轧机生产φ70 mm 20CrMnTiH齿轮钢的实践,根据4种导轮用钢T8、Cr16Ni3、Cr12MoV、Cr23Ni5Mo的性能试验和不同热处理工艺对φ70 mm导轮使用寿命的影响,优选了Cr12MoV钢(/%:1.45~1.55C、≤0.60Si、≤0.60Mn、12.00~13.00Cr、0.90~1.10Mo、0.90~1.10V)作为导轮材料并进行细化碳化物热处理和最终冷处理工艺,使Cr12MoV钢制成的导轮使用寿命达2 000 t,有效地保证钢材高精度轧制,减少尺寸废品。展开更多
文摘With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced surface engineering technologies as PVD coatings and duplex surface treatments in cold work dies has not been realized. In the present study, Crl2MoV steel has been surface engineered by single PVD Ti/TiN coating and duplex treatment combining low temperature plasma nitriding (LTPN) with PVD Ti/TiN coatings. The properties of Ti/TiN coatings in terms of surface morphology, microhardness, load bearing capacity, bonding strength and wear resistance were evaluated by microhardness, scratch and wear tests. The experimental results show that PVD Ti/TiN coatings can significantly enhance the surface load bearing capacity (especially for duplex treatments) and wear resistance of Crl2MoV steel by more than one order of magnitude. This can be mainly attributed to the hard and well-adherent PVD Ti/TiN surface coatings and strong mechanical support of the LTPN sublayer. While two-body abrasive wear prevails for uncoated Crl2MoV, the micropolishing action of the counterface dominates in surface engineered material.