Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study...Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.展开更多
Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become o...Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become one of the significant advances in public health.However,the disinfectants used in the process,such as chlorine and chlorine dioxide,react with natural organic matter in the water to produce disinfection by-products(DBPs).Most of these DBPs contain chlorine,and if the source water contains bromine or iodine,brominated or iodinated DBPs,collectively referred to as Halogenated disinfection byproducts(X-DBPs),are formed.Numerous studies have found that X-DBPs pose potential risks to human health and the environment,leading to widespread concern.Mass spectrometry has become an important means of discovering new types of X-DBPs.This paper focuses on the study of methods for analyzing X-DBPs in drinking water using mass spectrometry.展开更多
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott...Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.展开更多
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP...Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.展开更多
In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance...In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance was compared in the spring following autumn establishment as for age cover crops after soybean [Glycine max (L.) Merr.] grain harvest. Replicated pastures (0.4 ha) were no-till seeded in three consecutive years into soybean stubble in autumn, fertilized, and grazed the following spring near Ithaca, NE, USA. Each pasture (n = 3) was continuously stocked in spring with four yearling steers (380 ± 38 kg) for 17, 32, and 28 d in 2005, 2006, and 2007, respectively. In 2005, average daily gain (ADG) for steers grazing triticale exceeded the ADG for wheat by 0.31 kghd<sup>-1</sup>d<sup>-1</sup>. In 2006, wheat ADG exceeded that for triticale by 0.12 kghd<sup>-1</sup>d<sup>-1</sup>. In 2007, steers grazing wheat lost weight, while steers grazing triticale gained 0.20 kghd<sup>-1</sup>d<sup>-1</sup>. Based on the 3-year average animal gains valued at $1.32 kg<sup>-1</sup>, mean net return ($ ha<sup>-1</sup> yr<sup>-1</sup>) was $62.15 for triticale and $22.55 for wheat. Since these grazed cover crops provide ecosystem services in addition to forage, grazing could be viewed as a mechanism for recovering costs and adds additional value to the system. Based on this 3-year grazing trial, triticale was superior to wheat and likely will provide the most stable beef yearling performance across years with variable weather for the western Cornbelt USA.展开更多
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o...Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China.展开更多
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ...In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity.展开更多
灌溉是农业灌溉管理中非常重要的问题之一,传统的人工灌溉不仅浪费人力又工作效率不高。基于Crops模型的灌溉装置拟对农田中土壤环境、大气湿度和病虫害情况进行采样研究,掌握农田中的土壤环境以及空气湿度的变化规律,获得不同情况下的...灌溉是农业灌溉管理中非常重要的问题之一,传统的人工灌溉不仅浪费人力又工作效率不高。基于Crops模型的灌溉装置拟对农田中土壤环境、大气湿度和病虫害情况进行采样研究,掌握农田中的土壤环境以及空气湿度的变化规律,获得不同情况下的相关数据,在对相关数据进行分析的基础上,采用温度湿度传感器对一定范围内的各项指标进行分析,为田地里的农作物精准灌溉提供相关数据。Irrigation is one of the very important issues in agricultural irrigation management, and traditional manual irrigation not only wastes manpower but also has low work efficiency. The irrigation device based on the Crops model intends to sample and study the soil environment, atmospheric humidity and pests and diseases in the farmland, grasp the change law of the soil environment and air humidity in the farmland, obtain the relevant data under different conditions, and on the basis of the analysis of the relevant data, the temperature and humidity sensor is used to analyze the indicators within a certain range, so as to provide relevant data for the precise irrigation of crops in the field.展开更多
China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nut...China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs.展开更多
The commercialization of genetically modified(GM)crops has increased food production,improved crop quality,reduced pesticide use,promoted changes in agricultural production methods,and become an important new producti...The commercialization of genetically modified(GM)crops has increased food production,improved crop quality,reduced pesticide use,promoted changes in agricultural production methods,and become an important new production strategy for dealing with insect pests and weeds while reducing the cultivated land area.This article provides a comprehensive examination of the global distribution of GM crops in 2023.It discusses the internal factors that are driving their adoption,such as the increasing number of GM crops and the growing variety of commodities.This article also provides information support and application guidance for the new developments in global agricultural science and technology.展开更多
Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.Ho...Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.展开更多
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr...Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.展开更多
The treatment of heavy metals in water is of high importance worldwide,and different treatment types have been developed.The use of plant material is becoming more and more important,and oilseed crops biomass have bee...The treatment of heavy metals in water is of high importance worldwide,and different treatment types have been developed.The use of plant material is becoming more and more important,and oilseed crops biomass have been investigated in terms of phytoremediation and biosorption processes.This article is a review of the literature reporting the applications in 10 different plants and evaluating the removal efficiencies for 12 metals,including the findings of 81 publications.Moringa olifera and Helianthus annuus are the most studied plants,whereas Cu(21.9%),Cd(18.5%),and Pb(19.9%)are the most studied metals.As a result,it was found that more than 90%of Pb,Cu,Cd,Fe,Zn,Ni,Cr,Sr and Mn showed removals in their experiments.At the same time,the variables most related to the efficiency of metal removal are pH,temperature,and contact time.This article includes a review of the biosorption isotherms used in the different studies.展开更多
The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little i...The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.展开更多
Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of C...Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.展开更多
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai...Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system.展开更多
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi...Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.展开更多
Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This...Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This study presents a comprehensive overview of current bird repellant approaches used in agricultural contexts,as well as potential new ways. The bird repellent techniques include Internet of Things technology,Deep Learning,Convolutional Neural Network,Unmanned Aerial Vehicles,Wireless Sensor Networks and Laser biotechnology. This study’s goal is to find and review about previous approach towards repellent of birds in the crop fields using various technologies.展开更多
基金funded by the Foundation of State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants(Grant No.SEPKL-EHIAEC-202210)the Foundation of Shanghai Municipal Health Commission(Grant No.202240327)the Key Discipline Project of the Three-year Action Plan for Strengthening Public Health System Construction in Shanghai(2023-2025)(Grant No.GWVI-11.1-38)。
文摘Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.
文摘Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become one of the significant advances in public health.However,the disinfectants used in the process,such as chlorine and chlorine dioxide,react with natural organic matter in the water to produce disinfection by-products(DBPs).Most of these DBPs contain chlorine,and if the source water contains bromine or iodine,brominated or iodinated DBPs,collectively referred to as Halogenated disinfection byproducts(X-DBPs),are formed.Numerous studies have found that X-DBPs pose potential risks to human health and the environment,leading to widespread concern.Mass spectrometry has become an important means of discovering new types of X-DBPs.This paper focuses on the study of methods for analyzing X-DBPs in drinking water using mass spectrometry.
基金supported by the National Natural Science Foundation of China(32071968)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(22)2015))the Jiangsu Collaborative Innovation Center for Modern Crop Production,China。
文摘Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.
基金supported by the Scientific and Innovative Action Plan of Shanghai(21N31900800)Shanghai Rising-Star Program(23QB1403500)+4 种基金the Shanghai Sailing Program(20YF1443000)Shanghai Science and Technology Commission,the Belt and Road Project(20310750500)Talent Project of SAAS(2023-2025)Runup Plan of SAAS(ZP22211)the SAAS Program for Excellent Research Team(2022(B-16))。
文摘Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.
文摘In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance was compared in the spring following autumn establishment as for age cover crops after soybean [Glycine max (L.) Merr.] grain harvest. Replicated pastures (0.4 ha) were no-till seeded in three consecutive years into soybean stubble in autumn, fertilized, and grazed the following spring near Ithaca, NE, USA. Each pasture (n = 3) was continuously stocked in spring with four yearling steers (380 ± 38 kg) for 17, 32, and 28 d in 2005, 2006, and 2007, respectively. In 2005, average daily gain (ADG) for steers grazing triticale exceeded the ADG for wheat by 0.31 kghd<sup>-1</sup>d<sup>-1</sup>. In 2006, wheat ADG exceeded that for triticale by 0.12 kghd<sup>-1</sup>d<sup>-1</sup>. In 2007, steers grazing wheat lost weight, while steers grazing triticale gained 0.20 kghd<sup>-1</sup>d<sup>-1</sup>. Based on the 3-year average animal gains valued at $1.32 kg<sup>-1</sup>, mean net return ($ ha<sup>-1</sup> yr<sup>-1</sup>) was $62.15 for triticale and $22.55 for wheat. Since these grazed cover crops provide ecosystem services in addition to forage, grazing could be viewed as a mechanism for recovering costs and adds additional value to the system. Based on this 3-year grazing trial, triticale was superior to wheat and likely will provide the most stable beef yearling performance across years with variable weather for the western Cornbelt USA.
基金co-supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030007)the National Key Research and Development Program of China (Grant Nos. 2017YFA0604302 and 2017YFA0604804)+1 种基金the National Natural Science Foundation of China (Grant No. 41875137)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)。
文摘Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China.
基金supported by the National Key Research and Development Program of China (2021YFD1700200)the earmarked fund for CARS-Green manure (CARS-22)+2 种基金the Inner Mongolia Natural Science Foundation (2022QN03032)the National Natural Science Foundation of China (32101852, 42207388)the Inner Mongolia Science and Technology Plan Project (2023YFHH0011)
文摘In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity.
文摘灌溉是农业灌溉管理中非常重要的问题之一,传统的人工灌溉不仅浪费人力又工作效率不高。基于Crops模型的灌溉装置拟对农田中土壤环境、大气湿度和病虫害情况进行采样研究,掌握农田中的土壤环境以及空气湿度的变化规律,获得不同情况下的相关数据,在对相关数据进行分析的基础上,采用温度湿度传感器对一定范围内的各项指标进行分析,为田地里的农作物精准灌溉提供相关数据。Irrigation is one of the very important issues in agricultural irrigation management, and traditional manual irrigation not only wastes manpower but also has low work efficiency. The irrigation device based on the Crops model intends to sample and study the soil environment, atmospheric humidity and pests and diseases in the farmland, grasp the change law of the soil environment and air humidity in the farmland, obtain the relevant data under different conditions, and on the basis of the analysis of the relevant data, the temperature and humidity sensor is used to analyze the indicators within a certain range, so as to provide relevant data for the precise irrigation of crops in the field.
基金This work was supported by the National Natural Science Foundation of China(72061147002 and 72373143)the National Social Science Fund of China(22&ZD085).
文摘China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs.
基金supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences。
文摘The commercialization of genetically modified(GM)crops has increased food production,improved crop quality,reduced pesticide use,promoted changes in agricultural production methods,and become an important new production strategy for dealing with insect pests and weeds while reducing the cultivated land area.This article provides a comprehensive examination of the global distribution of GM crops in 2023.It discusses the internal factors that are driving their adoption,such as the increasing number of GM crops and the growing variety of commodities.This article also provides information support and application guidance for the new developments in global agricultural science and technology.
基金financially supported by the National Key Technology Research and Development Program of China(2021YFD1901001-08)the Key Scientific and Technological Project of Henan Provincial Education Department,China(232102111119)。
文摘Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.
基金supported by the China Agriculture Research System of MOF and MARA(Soybean,CARS04-PS20)the National Natural Science Foundation of China(3187101212 and 31671625).
文摘Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.
基金funded by Universidad de La Salle,Bogota,(Grant Number IALI212-190).
文摘The treatment of heavy metals in water is of high importance worldwide,and different treatment types have been developed.The use of plant material is becoming more and more important,and oilseed crops biomass have been investigated in terms of phytoremediation and biosorption processes.This article is a review of the literature reporting the applications in 10 different plants and evaluating the removal efficiencies for 12 metals,including the findings of 81 publications.Moringa olifera and Helianthus annuus are the most studied plants,whereas Cu(21.9%),Cd(18.5%),and Pb(19.9%)are the most studied metals.As a result,it was found that more than 90%of Pb,Cu,Cd,Fe,Zn,Ni,Cr,Sr and Mn showed removals in their experiments.At the same time,the variables most related to the efficiency of metal removal are pH,temperature,and contact time.This article includes a review of the biosorption isotherms used in the different studies.
基金supported by the National Key Research and Development Program of China(2021YFD1901201-05)the China Agriculture Research System of MOF and MARA(CARS-22)+1 种基金the Special Program for Basic Research and Talent Training of Jiangxi Academy of Agricultural Sciences,China(JXSNKYJCRC202301 and JXSNKYJCRC202325)the National Natural Science Foundation of China(32160766).
文摘The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.
基金supported by the National Natural Science Foundation of China (Grant Nos.32100283 and 32071932)the Xinjiang ‘Tianchi Talent’ Recruitment Program, China。
文摘Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.
基金supported by Hebei Province Key Research Project(21327003D-1)Beijing Science and Technology Planning Project(Z221100006422005)+1 种基金China Postdoctoral Science Foundation(2023M743815)China Agriculture Research System(CARS301)。
文摘Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system.
基金funded by the National Key Research and Development Program of China(2023YFD150050504)the Key Research and Development Program of Shandong Province,China(2022SFGC0301)the Strategic Priority Research Program of the Chinese Academy of Sciences-Development and Application Technology of Special Package Fertilizer for Improving Albic Soil(XDA28100203)。
文摘Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.
文摘Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This study presents a comprehensive overview of current bird repellant approaches used in agricultural contexts,as well as potential new ways. The bird repellent techniques include Internet of Things technology,Deep Learning,Convolutional Neural Network,Unmanned Aerial Vehicles,Wireless Sensor Networks and Laser biotechnology. This study’s goal is to find and review about previous approach towards repellent of birds in the crop fields using various technologies.