期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Integration of Multiple Spectral Data via a Logistic Regression Algorithm for Detection of Crop Residue Burned Areas:A Case Study of Songnen Plain,Northeast China
1
作者 ZHANG Sumei ZHANG Yuan ZHAO Hongmei 《Chinese Geographical Science》 SCIE CSCD 2024年第3期548-563,共16页
The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate ... The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data. 展开更多
关键词 crop residue burning burned area Sentinel-2 Multi Spectral Instrument(MSI) logistic regression Songnen Plain China
下载PDF
Advanced Thermochemical Conversion Approaches for Green Hydrogen Production from Crop Residues
2
作者 Omojola Awogbemi Ayotunde Adigun Ojo Samson Adedayo Adeleye 《Journal of Renewable Materials》 EI CAS 2024年第1期1-28,共28页
The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydro... The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy. 展开更多
关键词 crop residues carbon neutrality PYROLYSIS GASIFICATION green hydrogen thermochemical conversion
下载PDF
Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning 被引量:62
3
作者 CAO Guoliang ZHANG Xiaoye +1 位作者 GONG Sunling ZHENG Fangcheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第1期50-55,共6页
Emission factors of particulate matter (PM), element carbon (EC), organic carbon (OC), SO2, NOx, CO, CO2, and ten ions (Na^+, NH4^+, K^+, Mg^2+, Ca^2+, Fˉ, Clˉ, NO2ˉ, NO3ˉ, SO42ˉ) were estimated from... Emission factors of particulate matter (PM), element carbon (EC), organic carbon (OC), SO2, NOx, CO, CO2, and ten ions (Na^+, NH4^+, K^+, Mg^2+, Ca^2+, Fˉ, Clˉ, NO2ˉ, NO3ˉ, SO42ˉ) were estimated from the domestic burning of four types of commonly produced crop residues in rural China: rice straw, wheat straw, corn stover, and cotton stalk, which were collected from the representative regions across China. A combustion tower was designed to simulate the cooking conditions under which the peasants burned their crop residues in rural China, to measure the emission factors. Results showed that wheat straw had the highest emission factor for the total PM (8.75 g/kg) among the four crop residues, whereas, corn stover and wheat straw have the highest emission factor for EC (0.95 g/kg) and OC (3.46 g/kg), respectively. Corn stover also presents as having the highest emission factors of NO, NOx, and CO2, whereas, wheat straw, rice straw, and cotton stalk had the highest emission factors of NO2, SO2, and CO, respectively. The water-soluble ions, K^+ and Clˉ, had the highest emission factors from all the crops. Wheat straw had a relatively higher emission factor of cation species and Fˉ, Clˉ, NO2ˉ than other residues. 展开更多
关键词 rural China crop residues combustion tower emission factor
下载PDF
Tillage, crop residue, and nutrient management effects on.soil organic carbon in rice-based cropping systems: A review 被引量:13
4
作者 Rajan Ghimire Sushil Lamichhane +2 位作者 Bharat Sharma Acharya Prakriti Bista Upendra Man Sainju 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第1期1-15,共15页
Soil organic carbon (SOC) sequestration is one of the major agricultural strategies to mitigate greenhouse gas (GHG) emissions, enhance food security, and improve agricultural sustainability. This paper synthesize... Soil organic carbon (SOC) sequestration is one of the major agricultural strategies to mitigate greenhouse gas (GHG) emissions, enhance food security, and improve agricultural sustainability. This paper synthesizes the much-needed state- of-knowledge on the effects of tillage, crop residue, and nutrient management practices on SOC sequestration and identifies potential research gap, opportunities, and challenges in studying SOC dynamics in rice (Oryza sativa L.)-based cropping systems in South Asia, mainly in Bangladesh, Bhutan, India, Nepal, Pakistan, and Sri Lanka. Improved management prac- tices such as reduced- and no-tillage management, nitrogen (N) fertilizer and farmyard manure (FYM) application, and crop residue addition can improve SOC accumulation. Positive effects of no-tillage, crop residue addition, N addition through manure or compost application, and integration of organic and chemical fertilizers on SOC accumulation in rice-based cropping systems have been documented from South Asia. However, limited data and enormous discrepancies in SOC measurements across the region exist as the greatest challenge in increasing SOC sequestration and improving agricultural sustainability. More research on SOC as influenced by alternative tillage, crop residue, and nutrient management systems, and development of SOC monitoring system for existing long-term experiments will advance our understanding of the SOC dynamics in rice-based cropping systems and improve agricultural system sustainability in South Asia. 展开更多
关键词 carbon mapping carbon sequestration crop residue NO-TILLAGE rice-wheat system
下载PDF
The Effects of Different Tillages on Crop Residue Sequestration, Soil Available Nutrients and Some Biochemical Properties in the Chinese Black Soil Region
5
作者 LIU Xiao-li CHEN Qiu-wen ZENG Zhao-xia 《Agricultural Sciences in China》 CAS CSCD 2011年第4期576-584,共9页
Three-year field experiments were conducted to investigate the effects of different tillage operations after harvest on crop residues sequestration and their subsequent effects on soil available nitrogen (N), phosph... Three-year field experiments were conducted to investigate the effects of different tillage operations after harvest on crop residues sequestration and their subsequent effects on soil available nitrogen (N), phosphorus (P), some soil biochemical properties, and three enzymatic activities during the following growing seasons in a soybean (Glycine max)-soybean- corn (Zea mays) rotation farming system in Northeast China. Two different managements were implemented after crop harvest every year, which were tillage (T) and no tillage (NT). Results showed that crop residue masses on soil surface and in the 0-20 cm layer after soybean harvest were about 1 450 and 340 kg ha-1, respectively, in October 2006 and 2007. While, soybean residue mass in the 0-20 cm soil layer was about 340 kg ha-1 in NT and about 1 550 kg ha-1 in T before sowing in May 2007 and 2008. The adverse results were found after corn crop plantation, that corn residue mass was about 270 and 860 kg ha-1 on soil surface and in the 0-20 cm soil layer, respectively, after harvest in October 2008, while residue mass in the 0-20 cm soil layer was only 466 kg ha-1 in T but 863 kg ha-1 in NT before planting in May 2009. So T had effectively sequestered soybean residue into soil but not corn. Results also showed that T after harvest helped to improve soil available N, P, soil microbial biomass carbon (MBC), and nitrogen (MBN) contents and soil enzymes activities (urease, acid phosphatase, and protease) during the 2007 and 2008 seasons, but the positive effects decreased during the 2009 season. T practice had significant positive effects on available N, P, MBC, and MBN contents, protease and urease activities, however, no obvious effects on acid phosphatase activity. In this study, T practice after soybean harvest was proved to be preferable to improve soil microbial and enzyme activities during the following seasons due to an efficient sequestration of soybean residues. However, NT could be considered preferential after corn crop harvest. 展开更多
关键词 crop residues TILLAGE soil biochemical properties Northeast China
下载PDF
Linking changes in the soil microbial community to C and N dynamics during crop residue decomposition
6
作者 Cyrine REZGUI Isabelle TRINSOUTROT-GATTIN +2 位作者 Marie BENOIT Karine LAVAL Wassila RIAH-ANGLET 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第11期3039-3059,共21页
Crop residues are among the main inputs that allow the organic carbon(C)and nutrients to be maintained in agricultural soil.It is an important management strategy that can improve soil fertility and enhance agricultur... Crop residues are among the main inputs that allow the organic carbon(C)and nutrients to be maintained in agricultural soil.It is an important management strategy that can improve soil fertility and enhance agricultural productivity.This work aims to evaluate the extent of the changes that may occur in the soil heterotrophic microbial communities involved in organic matter decomposition and C and nitrogen(N)mineralization after the addition of crop residues.Soil microcosm experiments were performed at 28℃ for 90 days with the addition of three crop residues with contrasting biochemical qualities:pea(Pisum sativum L.),rapeseed(Brassica napus L.),and wheat(Triticum aestivum L.).Enzyme activities,C and N mineralization,and bacterial and fungal biomasses were monitored,along with the bacterial and fungal community composition,by the highthroughput sequencing of 16 S rRNA and ITS genes.The addition of crop residues caused decreases in β-glucosidase and arylamidase activities and simultaneous enhancement of the C mineralization and net N immobilization,which were linked to changes in the soil microbial communities.The addition of crop residues decreased the bacterial and fungal biomasses 90 days after treatment and there were shifts in bacterial and fungal diversity at the phyla,order,and genera levels.Some specific orders and genera were dependent on crop residue type.For example,Chloroflexales,Inquilinus,Rubricoccus,Clitocybe,and Verticillium were identified in soils with pea residues;whereas Thermoanaerobacterales,Thermacetogenum,and Hypoxylon were enriched in soils with rapeseed residues,and Halanaerobiales,Rubrobacter,and Volutella were only present in soils with wheat residues.The findings of this study suggest that soil C and N dynamics in the presence of the crop residues were driven by the selection of specific bacterial and fungal decomposers linked to the biochemical qualities of the crop residues.If crop residue decomposition processes showed specific bacterial and fungal operational taxonomic unit(OTU)signatures,this study also suggests a strong functional redundancy that exists among soil microbial communities. 展开更多
关键词 crop residues C and N mineralization enzyme activities bacterial and fungal diversity
下载PDF
Typology of Crop Residues and Energy Recovery in Heavily Agricultural Areas: Case of the Departments of Soubré, Daloa, Issia and Sassandra (Côte d’Ivoire)
7
作者 Amenan Anne Mary Kouassi-Kouadio Pétémanagnan Jean-Marie Ouattara +2 位作者 Talnan Jean Honoré Coulibaly Franck Michaël Zahui Lacina Coulibaly 《Journal of Agricultural Chemistry and Environment》 CAS 2022年第3期196-208,共13页
The valorization of crop residues could constitute an energy source (biogas) allowing to reduce the energy needs of populations in agricultural regions, improve their living conditions and slow down deforestation as w... The valorization of crop residues could constitute an energy source (biogas) allowing to reduce the energy needs of populations in agricultural regions, improve their living conditions and slow down deforestation as well as greenhouse gas emissions. This work aims to determine the typology of agricultural waste in the departments of Soubré, Sassandra, Daloa and Issia, to determine the number of residues generated in these departments, and to assess the biogas potential of these departments said residues. Field observations were made to identify the different types of waste, then, based on agricultural statistical data from the Ministry of Agriculture and biogas productivity indexes, the quantities of agricultural residues and biogas were estimated. Agricultural residues consist of pods (50%), stalks (19%), cobs (3%), Straws (8%), stalks (2%), shells (9%), fibers (7%), husks (1%), and bunches (1%). In addition, these localities have 465266.3 t of pods, 173583.2 t of stalks, 84280.0 t of shells, 75,857 t of straws, 12,000 t of husks, 10,987 t of bunches and 6793.0 t of fibers. The departments of Soubré, Sassandra, Daloa and Issia contain a total potential energy of 235.87 × 10<sup>6</sup> m<sup>3</sup> of biogas. However, this is unevenly distributed among the localities. The volume of biogas recorded is higher in the department of Soubré (74.91 × 10<sup>6</sup> m<sup>3</sup>) which is followed respectively by the departments of Daloa (62.27 × 10<sup>6</sup> m<sup>3</sup>), Issia (52.77 × 10<sup>6</sup> m<sup>3</sup> and Sassandra (45.93 × 10<sup>6</sup> m<sup>3</sup>). The departments of Soubré, Sassandra, Daloa and Issia have a very large potential for the production of agricultural residues that may be of interest to economic operators for recovery in biogas production units. 展开更多
关键词 AGRICULTURE crop residues BIOGAS Sassandra Daloa Issia Soubré Côte d’Ivoire
下载PDF
Incorporation of Crop Residues into Soil: A Practice to Improve Soil Chemical Properties
8
作者 Sifolo S. Coulibaly Mamadou Touré +4 位作者 Amoin E. Kouamé Ini C. Kambou Sientchon Y. Soro Kadokan I. Yéo Sita Koné 《Agricultural Sciences》 2020年第12期1186-1198,共13页
Crop residues have the potential to enhance soil fertility, but this is dependent on their biochemical properties. This study aimed to evaluate the chemical composition, and nutrients release patterns of selected crop... Crop residues have the potential to enhance soil fertility, but this is dependent on their biochemical properties. This study aimed to evaluate the chemical composition, and nutrients release patterns of selected crop residues (corn stalk, rice straw, millet straw and sorghum stalk). Thus, 20 g of each crop residue were put in litter bags and placed in a plastic pot containing 10 kg of soil with a moisture content of 40% - 60%. Five replications were considered per type of residue and some samples were taken every 4 weeks. Results showed that crop residues got a pH varying between 5.09 and 6.5. The lowest C content (33.11%) and nitrogen (0.27%) were measured in sorghum stalk when the highest C content (47.6%) and nitrogen content (0.55%) were registered in corn stalk. The highest phosphorus content (0.58%) was got in corn stalk. Potassium content was higher in millet straw than in others. The highest calcium content (0.37%) and magnesium (0.29%) were found in rice straw. There was an increase of soil chemical composition after crop residues burial. Significant increase in carbon, nitrogen, and phosphorus content was noted in soil at week 4 with the highest at week 16. At the end of the experiment, the highest C content (53.1%) and the highest nitrogen content (0.88%) in the soil were observed after burial of rice straw. The highest phosphorus content (0.82%) registered in the soil was got with millet straw. Nutrient release efficiency of crop residues occurred in the following order: rice straw > millet straw > sorghum stalk > corn stalk. This study has demonstrated that rice straw and millet straw released nutrients faster and this is beneficial for early planted crops, while sorghum stalk and corn stalk released nutrients slowly which is appropriate for long-term availability of plant nutrients. 展开更多
关键词 crop residues BURIAL Nutrient Release
下载PDF
Identification of Techno-Economically Viable Crop Residue Utilization in India
9
作者 Shahabaddine Sokhansanj Yogender Kumar Yadav +4 位作者 Anthony Lau Yadvika Mahmood Ebadian Kanishk Verma 《Journal of Sustainable Bioenergy Systems》 2021年第2期94-104,共11页
India generates more than 140 million tonnes of surplus crop residue every year In Haryana, the agricultural sector alone produces 24.64 million tonnes of residue annually;of which only 71</span><span style=&... India generates more than 140 million tonnes of surplus crop residue every year In Haryana, the agricultural sector alone produces 24.64 million tonnes of residue annually;of which only 71</span><span style="white-space:nowrap;font-family:Verdana;">&#37;</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> is consumed in various domestic and commercial activities within the state. The rest of the material is burned causing severe contamination of air with smoke. There is an urgent need to identify suitable and sustainable conversion technologies that are efficient, eco-friendly as well as cost-effective for managing the huge available biomass not only in the state but also in the country. This paper reviews briefly the available crop residue and quantities burned, proposes a scheme to incorporate part of the residue in the field for its fertilizer value. The remaining biomass is harvested for animal feed and the excess is converted to bioenergy and biofuels. Among the developed and developing biofuels, the paper identifies biogas production from biomass for on-farm use. Pelletization is identified as an enabling technology to provide high quality feedstock for conversion to heat/power and in near future to advanced biofuels. 展开更多
关键词 INDIA crop residue crop Burning Environment HARVEST Collection PELLETS BIOGAS TECHNO-ECONOMIC Advanced Biofuels
下载PDF
Dynamics of major air pollutants from crop residue burning in China's Mainland,2000–2014 被引量:10
10
作者 Quanfeng Jin Xiangqing Ma +2 位作者 Guangyu Wang Xiajie Yang Futao Guo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第8期190-205,共16页
Based on satellite image data and China's Statistical Yearbooks(2000 to 2014), we estimated the total mass of crop residue burned, and the proportion of residue burned in the field vs.indoors as domestic fuel. The ... Based on satellite image data and China's Statistical Yearbooks(2000 to 2014), we estimated the total mass of crop residue burned, and the proportion of residue burned in the field vs.indoors as domestic fuel. The total emissions of various pollutants from the burning of crop residue were estimated for 2000-2014 using the emission factor method. The results indicate that the total amount of crop residue and average burned mass were 8690.9 Tg and4914.6 Tg, respectively. The total amount of emitted pollutants including CO2, CO, NOx,VOCs, PM(2.5), OC(organic carbon), EC(element carbon) and TC(total carbon) were 4212.4–8440.9 Tg, 192.8–579.4 Tg, 4.8–19.4 Tg, 18.6–61.3 Tg, 18.8–49.7 Tg, 6.7–31.3 Tg, 2.3–4.7 Tg, and8.5–34.1 Tg, respectively. The emissions of pollutants released from crop residue burning were found to be spatially variable, with the burning of crop residue mainly occurring in Northeast, North and South China. In addition, pollutant emissions per unit area(10 km ×10 km) were mostly concentrated in the central and eastern regions of China. Emissions of CO2, NOx, VOCs, OC and TC were mainly from rice straw burning, while burning of corn and wheat residues contributed most to emissions of CO, PM(2.5) and EC. The increased ratio of PM(2.5) emissions from crop residue burning to the total emitted from industry during the study period is attributed to the implementation of strict emissions management policies in Chinese industry. This study also provides baseline data for assessment of the regional atmospheric environment. 展开更多
关键词 Agricultural pollutants crop residue Straw burning Air pollution Temporal and spatial variations
原文传递
Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products 被引量:20
11
作者 Jing Li Yu Bo Shaodong Xie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第6期158-170,共13页
With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high sp... With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°× 0.25° and a temporal resolution of1 month was established based on the moderate resolution imaging spectroradiometer(MODIS) Thermal Anomalies/Fire Daily Level3 Global Product(MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4,nonmethane volatile organic compounds(NMVOCs), N2O, NOx, NH3, SO2, fine particles(PM2.5),organic carbon(OC), and black carbon(BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43,1.09, 0.34, and 0.06 Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June(37%).Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ± 169% for NH3. 展开更多
关键词 crop residue open burning Air quality Emission inventory Moderate resolution imaging spectroradiometer(MODIS)
原文传递
Size distribution and chemical characteristics of particles from crop residue open burning in North China 被引量:2
12
作者 Tingkun Li Qili Dai +3 位作者 Xiaohui Bi Jianhui Wu Yufen Zhang Yinchang Feng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第11期66-76,共11页
Crop residue open burning is an important emission source of ambient particles in China.This study analyzed the particle emission characteristics of crop residue open burning through combustion experiments with a nove... Crop residue open burning is an important emission source of ambient particles in China.This study analyzed the particle emission characteristics of crop residue open burning through combustion experiments with a novel open combustion simulation device using three typical crop straws in north China(corn,wheat,and rice).Particle samples size ranging from 0.006–9.890μm were collected by an Electrical Low Pressure Impactor plus,a high size-resolution instrument capable of dividing particles into 14 size stages.The size distributions of organic carbon(OC),elemental carbon(EC),water-soluble ions,and elements were analyzed,and source chemical profiles were constructed for PM0.1,PM1,PM2.5,and PM10.The number concentration of particles was concentrated in the Aiken nuclei mode(0.006–0.054μm),accounting for 75%of the total number,whereas the mass concentration was concentrated in the accumulation mode(0.054–0.949μm),accounting for 85.43%of the mass loading.OC,EC,Cl−,and K(include total K and water-soluble K)were the major chemical components of the particles,whose mass percentage distributions differed from those of other components.These fivemain components exhibited a bell-shaped size distribution in the 0.006–9.890μm range,whereas the other components exhibited a U-shaped distribution.Among the chemical profiles for PM0.1–PM10,OC was the most important component at 10–30%,followed by EC at 2%–8%.The proportions of K^(+),Cl^(−),and K varied substantially in different experimental groups,ranging from 0–15%,and K+and Cl−were significantly correlated(r=0.878,α=0.000). 展开更多
关键词 crop residue Open burning Size distribution Source profile Electrical Low Pressure Impactor plus(ELPI+)
原文传递
Effects of crop residue managements and tillage practices on variations of soil penetration resistance in sloping farmland of Mollisols 被引量:2
13
作者 Yijiao Wang Jinyou Qiao +4 位作者 Wenyi Ji Jian Sun Dongxu Huo Yupeng Liu Haitao Chen 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第1期164-171,共8页
Soil penetration resistance(SPR)is one of the major indicators of soil physical properties.Crop residue managements,tillage practices and their interactions exert significant effects on the SPR.However,rare informatio... Soil penetration resistance(SPR)is one of the major indicators of soil physical properties.Crop residue managements,tillage practices and their interactions exert significant effects on the SPR.However,rare information is available in the sloping farmland of Mollisols.Field experiments were conducted to investigate the variations of the SPR as affected by crop residue managements and tillage practices on the sloping land in Northeast China from 2015 to 2019.The split-plot experiment was arranged with two crop residue managements(removed,REM and retained,RET),and three tillage practices(no tillage,NT;rotary tillage,RT;plow tillage,PT).SPR data in 0-80 cm soil depth was measured at the end of harvest of maize monoculture.Results showed that the two crop residue managements induced significant variations in the SPR at 0-15 cm,15-30 cm and 0-80 cm soil depths under NT,RT,and PT treatments,respectively.In comparison with RET treatment,the average values of the SPR under REM treatment were 10.9%and 8.9%higher in 45-60 cm and 60-80 cm soil depths,respectively.The average values of the SPR under PT treatment were 12.4%and 14.1%lower in 0-15 cm soil depth,and 23.9%and 10.4%lower in 15-30 cm soil depth than those under NT and RT treatments.However,the average value of the SPR under PT treatment was 11.2%and 22.0%higher in 60-80 cm soil depth than those under NT and RT treatments,respectively.The SPR generally decreased with the slope position declined in the deeper soil depth(except for the NT+RET treatment).The findings from this research can provide a scientific reference for the establishment of rational cultivation and the sustainable development of productivity on the sloping land of Mollisols in cold regions. 展开更多
关键词 soil penetration resistance crop residue management tillage practice slope position soil depth MOLLISOLS
原文传递
Assessing the potential of crop residue recycling in China and technology options based on a bottom-up model 被引量:1
14
作者 Lili QU Tianzhu ZHANG Wei LU 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第4期570-579,共10页
Crop residues are an important biomass, and are significant in the sustainable development of China. This paper uses the Grey-Markov modeling approach, the cost-benefit analysis method, and the constraint optimiza- ti... Crop residues are an important biomass, and are significant in the sustainable development of China. This paper uses the Grey-Markov modeling approach, the cost-benefit analysis method, and the constraint optimiza- tion method to establish the potential of crop residue recycling in China (CRRC) using a bottom-up analysis. Taking 2010 as the baseline year, the CRRC model is used to determine the quantity trends of crop residue resources, simulating the recycling potential and selecting key crop residue recycling technologies for operation between 2010 and 2030. The results illustrate that the total residue output from different crops will gradually increase to 1062 million tons in 2030. The proportion of crop residue for field burning is expected to decrease as a result of guidance and support from the government. Market mechanisms are also improving the development of the crop residue recycling industry. The economic benefit of crop residue recycling is expected to be worth 132 billion CNY in 2030 according to technology structure options. Key crop residue recycling technologies preferred such as liquefaction, amination, silo, co-firing straw power and composting will account for more than 85% of the total benefits. 展开更多
关键词 China crop residue recycling potential technology options
原文传递
Environmental,social,and economic assessment of energy utilization of crop residue in China 被引量:1
15
作者 Yueling ZHANG Junjie LI +3 位作者 Huan LIU Guangling ZHAO Yajun TIAN Kechang XIE 《Frontiers in Energy》 SCIE CSCD 2021年第2期308-319,共12页
This paper aims to discuss an environmental, social, and economic analysis of energy utilization of crop residues from life cycle perspectives in China. The methodologies employed to achieve this objective are environ... This paper aims to discuss an environmental, social, and economic analysis of energy utilization of crop residues from life cycle perspectives in China. The methodologies employed to achieve this objective are environmental life cycle assessment (E-LCA), life cycle cost (LCC), and social life cycle assessment (S-LCA). Five scenarios are developed based on the conversion technologies and final bioenergy products. The system boundaries include crop residue collection, transportation, pre-treatment, and conversion process. The replaced amounts of energy are also taken into account in the E-LCA analysis. The functional unit is defined as 1 MJ of energy produced. Eight impact categories are considered besides climate change in E-LCA. The investment capital cost and salary cost are collected and compared in the life cycle of the scenarios. Three stakeholders and several subcategories are considered in the S-LCA analysis defined by UNEP/SETAS guidelines. The results show that the energy utilization of crop residue has carbon emission factors of 0.09–0.18 kg (CO2 eq per 1 MJ), and presents a net carbon emissions reduction of 0.03–0.15 kg (CO2 eq per 1 MJ) compared with the convectional electricity or petrol, but the other impacts should be paid attention to in the biomass energy scenarios. The energy utilization of crop residues can bring economic benefit to local communities and the society, but the working conditions of local workers need to be improved in future biomass energy development. 展开更多
关键词 crop residue life cycle assessment life cycle cost social life cycle assessment energy production
原文传递
Crop residues: applications of lignocellulosic biomass in the context of a biorefinery
16
作者 Maria Carolina ANDRADE Caio de Oliveira GORGULHO SILVA +1 位作者 Leonora Rios de SOUZA MOREIRA Edivaldo Ximenes FERREIRA FILHO 《Frontiers in Energy》 SCIE CSCD 2022年第2期224-245,共22页
Interest in lignocellulosic biomass conversion technologies has increased recently because of their potential to reduce the dependency on non-renewable feedstocks. Residues from a variety of crops are the major source... Interest in lignocellulosic biomass conversion technologies has increased recently because of their potential to reduce the dependency on non-renewable feedstocks. Residues from a variety of crops are the major source of lignocellulose, which is being produced in increasingly large quantities worldwide. The commercial exploitation of crop residues as feedstocks for biorefineries which could be used to produce a variety of goods such as biofuels, biochemicals, bioplastics, and enzymes is an attractive approach not only for adding value to residues but also for providing renewable products required by the expanding bioeconomy market. Moreover, the implementation of biorefineries in different regions has the potential to add value to the specific crop residues produced in the region. In this review, several aspects of crop residue application in biorefineries are discussed, including the role of crop residues in the bioeconomy and circular economy concepts, the main technical aspects of crop residue conversion in biorefineries, the main crop residues generated in different regions of the world and their availability, the potential value-added bioproducts that can be extracted or produced from each crop residue, and the major advantages and challenges associated with crop residue utilization in biorefineries. Despite their potential, most biomass refining technologies are not sufficiently advanced or financially viable. Several technical obstacles, especially with regard to crop residue collection, handling, and pre-treatment, prevent the implementation of biorefineries on a commercial scale. Further research is needed to resolve these scale-up-related challenges. Increased governmental incentives and bioeconomic strategies are expected to boost the biorefinery market and the cost competitiveness of biorefinery products. 展开更多
关键词 crop residue BIOREFINERY bioproduct BIOMASS circular bioeconomy ENZYME
原文传递
Contributions of Different N Sources to Crop N Nutrition in a Chinese Rice Field 被引量:11
17
作者 CHEN Yi,TANG Xu,YANG Sheng-Mao,WU Chun-Yan and WANG Jia-Yu Institute of Environmental Resources and Soil Fertilizer,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021 (China) 《Pedosphere》 SCIE CAS CSCD 2010年第2期198-208,共11页
N availability is one of the most important factors limiting crop yield enhancement.The recovery of applications of 15 N-labeled fertilizer and crop residues in a rice-wheat cropping system was determined for up to 6 ... N availability is one of the most important factors limiting crop yield enhancement.The recovery of applications of 15 N-labeled fertilizer and crop residues in a rice-wheat cropping system was determined for up to 6 consecutive growing seasons.The crop residues from the previous season were either incorporated or removed as two different treatments.Our results showed that 16.55%-17.79% (17.17% on average) of the fertilizer N was recovered in the crop during the first growing season,suggesting that more than 80% of crop N was not directly from the N fertilizer.When 15 N-labeled residues were applied,12.01% was recovered in the crop in the first growing season.The average recoveries of fertilizer N and crop residue N in the soil after the first growing season were 33.46% and 85.64%,respectively.N from soil organic matter contributed approximately 83% of the N in the crop when 15 N fertilizer was applied or 88% when crop residues were applied.There was a larger difference in the total 15 N recovery in plant and soil between N applications in the forms of fertilizer and crop residues.Incorporation of crop residues following the 15 N fertilizer application did not significantly promote 15 N recovery in the crop or soil.On average,only additional 1.94% of N for the fertilizer-applied field or 5.97% of N for the crop residue-applied field was recovered by the crops during the 2nd and 3rd growing seasons.The total recoveries of 15 N in crop and soil were approximately 64.38% for the fertilizer-applied field after 6 growing seasons and 79.11% for the crop residue-applied field after 5 growing seasons.Although fertilizer N appeared to be more readily available to crops than crop residue N,crop residue N replenished soil N pool,especially N from soil organic matter,much more than fertilizer N.Therefore,crop residue N was a better source for sustaining soil organic matter.Our results suggested that the long-term effect of fertilizer or crop residues on N recovery were different in the crop and soil.However,there was little difference between the practices of crop residue incorporation and residue removal following the N fertilizer application. 展开更多
关键词 crop residue 15 N recovery N fertilizer
下载PDF
Estimates on nitrogen uptake in the subsequent wheat by aboveground and root residue and rhizodeposition of using peanut labeled with^(15)N isotope on the North China Plain 被引量:4
18
作者 ZHANG Kai ZHAO Jie +5 位作者 WANG Xi-quan XU He-shui ZANG Hua-dong LIU Jing-na HU Yue-gao ZENG Zhao-hai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第3期571-579,共9页
Leguminous crops play a vital role in enhancing crop yield and improving soil fertility. Therefore, it can be used as an organic N source for improving soil fertility. The purpose of this study was to(i) quantify the ... Leguminous crops play a vital role in enhancing crop yield and improving soil fertility. Therefore, it can be used as an organic N source for improving soil fertility. The purpose of this study was to(i) quantify the amounts of N derived from rhizodeposition, root and above-ground biomass of peanut residue in comparison with wheat and(ii) estimate the effect of the residual N on the wheat-growing season in the subsequent year. The plants of peanut and wheat were stem fed with 15 N urea using the cotton-wick method at the Wuqiao Station of China Agricultural University in 2014. The experiment consisted of four residue-returning strategies in a randomized complete-block design:(i) no return of crop residue(CR0);(ii) return of above-ground biomass of peanut crop(CR1);(iii) return of peanut root biomass(CR2); and(iv) return of all residue of the whole peanut plant(CR3). The 31.5 and 21% of the labeled 15 N isotope were accumulated in the above-ground tissues(leaves and stems) of peanuts and wheat, respectively. N rhizodeposition of peanuts and wheat accounted for 14.91 and 3.61% of the BG15 N, respectively. The 15 N from the below-ground 15 N-labeled of peanuts were supplied 11.3, 5.9, 13.5, and 6.1% of in the CR0, CR1, CR2, and CR3 treatments, respectively. Peanut straw contributes a significant proportion of N to the soil through the decomposition of plant residues and N rhizodeposition. With the current production level on the NCP, it is estimated that peanut straw can potentially replace 104 500 tons of synthetic N fertilizer per year. The inclusion of peanut in rotation with cereal can significantly reduce the use of N fertilizer and enhance the system sustainability. 展开更多
关键词 cropping system crop residues RHIZODEPOSITION ^(15)N labeling
下载PDF
Fate of Nitrogen from Organic and Inorganic Sources in Rice-Wheat Rotation Cropping System 被引量:5
19
作者 CHEN Yi,WU Chun-yan,TANG Xu,YANG Sheng-mao and WANG Jia-yu Institute of Environmental Resources and Soil Fertilizer,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,P.R.China 《Agricultural Sciences in China》 CSCD 2010年第7期1017-1025,共9页
The lower availability of N is one of the most important limiting factors impeding crop yield enhancement among the various factors that affect crop yield under the multiple-cropping agroecosystem in China.In this stu... The lower availability of N is one of the most important limiting factors impeding crop yield enhancement among the various factors that affect crop yield under the multiple-cropping agroecosystem in China.In this study,the recovery of a single application of 15N-labeled fertilizer or residues in rice-wheat cropping system was determined,in order to provide theoretical foundation for the nitrogen management in sustainable agricultural production.A continuous trace experiment was conducted for 15N microplots by using randomized block design with four treatments and four replications(T1 = 15N-labeled fertilizer with crop residue incorporation,T2 = 15N-labeled residues,T3 = 14N fertilizer to generate unlabeled crop residue,and T4 = 15Nlabeled fertilizer without crop residue incorporation).Our results showed that,on average,17.17 and 12.01% of crop N was derived from N fertilizer and 15N-labeled residues,respectively during the first growing season,suggesting that approximately 82.83 or 87.99% of crop N was derived directly from soil N pool.There was a larger difference in the 15N recovery pattern in crop when N was applied as fertilizer or residues,i.e.,most of crop N derived from N fertilizer was absorbed in the first growing season(92.04%),and the relevant value was 38.03% when 15N-labeled residues were applied.This implied that most of N fertilizer was recovered in the present cropping season,while a longer residue effect will be found for 15N-labeled residues.Thus,the average recovery of N fertilizer and N residue in the soil after the first growing season was 33.46 and 85.64%,respectively.The recovery of applied N in soil when N was applied as residues was significantly higher than that when N was applied as fertilizer.There was a larger difference in the total 15N recovery in plant and soil when N was applied as fertilizer or residues.By the end of the fifth or sixth cropping season,the total 15N recovery in plant and soil when N was applied as fertilizer or residues were estimated at 64.38 and 79.11%,respectively.On the contrary,there was little difference between the practices of residue incorporation and residue removal following the N fertilizer application.N fertilizer appeared to be more readily available to crops than residue-N,and residue-N replenished soil N pool,especially N in soil organic matter,much more than N fertilizer after six growing seasons.Therefore,residue-N is a better source for sustaining N content of soil organic matter.Thus,one possible management practice is to use both organic and inorganic N sources simultaneously to improve the use efficiency of N while protecting the sustainability of soil. 展开更多
关键词 crop residue fertilizer fate 15N isotope nitrogen fertilizer rice field
下载PDF
Characteristics of maize residue decomposition and succession in the bacterial community during decomposition in Northeast China
20
作者 ZHAO Shi-cheng Ignacio ACIAMPITTI +2 位作者 QIU Shao-jun XU Xin-peng HE Ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第12期3289-3298,共10页
Microbes are decomposers of crop residues,and climatic factors and residue composition are known to influence microbial growth and community composition,which in turn regulate residue decomposition.However,the success... Microbes are decomposers of crop residues,and climatic factors and residue composition are known to influence microbial growth and community composition,which in turn regulate residue decomposition.However,the succession of the bacterial community during residue decomposition in Northeast China is not well understood.To clarify the property of bacterial community succession and the corresponding factors regulating this succession,bags containing maize residue were buried in soil in Northeast China in October,and then at different intervals over the next 2 years,samples were analyzed for residue mass and bacterial community composition.After residue burial in the soil,the cumulative residue mass loss rates were 18,69,and 77%after 5,12,and 24 months,respectively.The release of residue nitrogen,phosphorus,and carbon followed a similar pattern as mass loss,but 79%of residue potassium was released after only 1 month.The abundance,richness,and community diversity of bacteria in the residue increased rapidly and peaked after 9 or 20 months.Residue decomposition was mainly influenced by temperature and chemical composition in the early stage,and was influenced by chemical composition in the later stage.Phyla Actinobacteria,Bacteroidetes,and Firmicutes dominated the bacterial community composition in residue in the early stage,and the abundances of phyla Chloroflexi,Acidobacteria,and Saccharibacteria gradually increased in the later stage of decomposition.In conclusion,maize residue decomposition in soil was greatly influenced by temperature and residue composition in Northeast China,and the bacterial community shifted from dominance of copiotrophic populations in the early stage to an increase in oligotrophic populations in the later stage. 展开更多
关键词 crop residue decomposition BACTERIA microbial community succession nutrient release climate condition
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部