Commercial grain oriented silicon steels 0 30mm thick were cold rolled to thinner than mm by the cross shear rolling (CSR) and the conventional rolling respectively, then annealed in a normal hydrogen atmosphere furn...Commercial grain oriented silicon steels 0 30mm thick were cold rolled to thinner than mm by the cross shear rolling (CSR) and the conventional rolling respectively, then annealed in a normal hydrogen atmosphere furnace. The influence of the process parameters on rolled textures and the magnetic property of thin silicon steel sheets were investigated. The results indicated that the cross shear rolling was beneficial to improve the rolled textures and the magnetic property of the thin silicon steels. The amount of nucleus of Goss grain increased with increasing the mismatch speed ratio; in addition, magnetic properties were improved further with increasing reduction rate, meanwhile, rolled textures tend to well distributed through the thickness of the sheet.展开更多
Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were resea...Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were researched by ODF method and reverse pole figure quantitative analyses. The results indicate that: in the condition of the cross shear rolling, the deformation texture of rolled sheet is generally similar to that of conventional rolled sheet, however, the texture distribution through the thickness is asymmetrical. With mismatch speed ratio increasing, the amount of Goss texture increases. With reduction ratio increasing, the intensity of γ-fiber becomes strong.展开更多
The texture inhomogeneity in cross shear rolled grain oriented Si steel was investigated by means of the through thickness texture analysis. For the chosen rolling reductions (55%, 66.5%) and mismatch speed ratios (1....The texture inhomogeneity in cross shear rolled grain oriented Si steel was investigated by means of the through thickness texture analysis. For the chosen rolling reductions (55%, 66.5%) and mismatch speed ratios (1.0, 1.1, 1.3), the deformation textures in various thickness layers consist of three major components, i.e. strong γ-fiber, medium α-fiber and weak η-fiber, and they show an asymmetrical distribution throughout the thickness. The effect of reduction on the texture gradient is found to be more significant at and near the center layer; however, the effect of mismatch speed ratio is less important. In most cases, a strong {111}<112> texture component appears in the subsurface layers, that may favour the formation of a sharp Goss texture during the subsequent annealing.展开更多
In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio ...In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The "positive" and "negative" cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.展开更多
A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whet...A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whether the cross shear is introduced in theinitial time or in early stage. If cross shear is introduced in the stage that the roll-up ofmixing layer occurs, the turbulent intensities of now will increase and mixture of now willbe enhanced.展开更多
70-30 brass is rolled with 90% reduction by cross shear rolling in single direction with speed ra- tio 1.39.The sheet is divided into five layers along rolling plane normal to measure macroscopic statis- tical unsymme...70-30 brass is rolled with 90% reduction by cross shear rolling in single direction with speed ra- tio 1.39.The sheet is divided into five layers along rolling plane normal to measure macroscopic statis- tical unsymmetric textures in every layer are des- cribed and analysed by means of three dimensional orientation distribution function.The results indi- cate that the main textures in every layer of brass rolled by cross shear rolling in single direction are the same as the main textures of brass rolled by conventional rolling.But the intensities,peak posi- tions and scatters of every texture component in {110}<112>are different,namely,there is a macroscopic statistical unsymmetry.It is found that the textures in every layer of brass rolled by cross shear rolling in single direction can be considered as the textures of brass rolled by common rolling in single direction at identical shear forces,the macroscopic statistical unsymmetry depends on the shear forces which are exerted on the layer.展开更多
The texture change along the normal direction to rolling plane of cross shear rolled commer- cial copper has been studied by means of two step method for ODF caleulation and computer simulation.The texture of cross sh...The texture change along the normal direction to rolling plane of cross shear rolled commer- cial copper has been studied by means of two step method for ODF caleulation and computer simulation.The texture of cross shear rolling of copper is similar in primary components to that of conventional cold rolling,but the scattering degree and direction of the texture are dif- ferent,due to the residual shear strain change in different position along the normal to rolling plane.It seems that no more effect of the shear strain upon the recrystallization texture.展开更多
There exists evident macroscopic statistical unsymmetry texture in every layer of 70-30 brass rolled by single directional cross shear rolling. There has been a consistent interest in how to measure and calculate this...There exists evident macroscopic statistical unsymmetry texture in every layer of 70-30 brass rolled by single directional cross shear rolling. There has been a consistent interest in how to measure and calculate this kind of unsymmetric global texture. Utilizing the previous composite sample methods, people can only describe a展开更多
In this paper, a finite element method is developed to numericallyevaluate the shear coefficient of Timoshenko's beam with multiplyconnected cross section. With focus on analyzing shear stressesdistributed at the ...In this paper, a finite element method is developed to numericallyevaluate the shear coefficient of Timoshenko's beam with multiplyconnected cross section. With focus on analyzing shear stressesdistributed at the neutral axis of the beam, an improved definitionof the shear coeffi- cient is presented. Based on this definition, aGalerkin-type finite element formulation is proposed to analyze theshear stresses and shear deflections. Numerical solutions of theexamples for some typical cross-sections are compared with thetheoretical results. The shear coefficient of tower sections of theTsing Ma Bridge is calculated by use of the proposed approach, sothat the finite element modeling of The bridge can be developed withthe accurate values of the sectional properties.展开更多
Using the cross correlation function analysis method, this paper discusses shear wave splitting and crack-inducedanisotropy in the crust beneath Tangshan, North China, by the digital data from Tangshan strong ground m...Using the cross correlation function analysis method, this paper discusses shear wave splitting and crack-inducedanisotropy in the crust beneath Tangshan, North China, by the digital data from Tangshan strong ground monon temporary arrays. Sixteen of twenty-one stations in the arrays recorded earthquake events available forstudying from 1982 to 1984. Having calculated 131 available records, we get slower shear wave time delay r andfaster shear wave polarization azimuth Paz in Tangshan region, and the cracks density s is got further fromthem. The analysis shows that the stress field is very complicated in Tangshan region and has strongly regionalfeature. Because of the complicated distribution of faults, different shear wave splitting characteristics are shownin 16 stations, scattered r and different Paz. And they also were observed that the r and PaZ values were diversewithin the time scale of hours in more than one station. In Tangshan region the average results of r, Paz and Bare 0. 0071 s. km-1, northwest-west near to east-west and 0.022 respectively. Meantime, the standard devia.tions were calculated in this paper.展开更多
After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province i...After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province in the aftershock region. It provides profuse data to systematically analyze the features of Yao'an earthquake. The crustal anisotropy is realized by shear wave splitting propagating in the upper crust. Based on the accurate aftershock relocations, the shear wave splitting parameters are determined with the cross-correlation method, and the results of different stations and regions are discussed in this paper. These conclusions are obtained as follows: firstly, the average fast directions of aftershock region are controlled by the regional stress field and parallel to the maximum horizontal compressive stress direction; secondly, the average fast directions of disparate stations and regions are different and vary with the structural settings and regional stress fields; finally, delay time value is affected by all sorts of factors, which is affinitive with the shear wave propagating medium, especially.展开更多
文摘Commercial grain oriented silicon steels 0 30mm thick were cold rolled to thinner than mm by the cross shear rolling (CSR) and the conventional rolling respectively, then annealed in a normal hydrogen atmosphere furnace. The influence of the process parameters on rolled textures and the magnetic property of thin silicon steel sheets were investigated. The results indicated that the cross shear rolling was beneficial to improve the rolled textures and the magnetic property of the thin silicon steels. The amount of nucleus of Goss grain increased with increasing the mismatch speed ratio; in addition, magnetic properties were improved further with increasing reduction rate, meanwhile, rolled textures tend to well distributed through the thickness of the sheet.
基金National Natural Science Foundation of China!(No. 59671037).
文摘Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were researched by ODF method and reverse pole figure quantitative analyses. The results indicate that: in the condition of the cross shear rolling, the deformation texture of rolled sheet is generally similar to that of conventional rolled sheet, however, the texture distribution through the thickness is asymmetrical. With mismatch speed ratio increasing, the amount of Goss texture increases. With reduction ratio increasing, the intensity of γ-fiber becomes strong.
基金This work was supported by the National Natural Science Foundation of China (No. 59671037 and 50071061).
文摘The texture inhomogeneity in cross shear rolled grain oriented Si steel was investigated by means of the through thickness texture analysis. For the chosen rolling reductions (55%, 66.5%) and mismatch speed ratios (1.0, 1.1, 1.3), the deformation textures in various thickness layers consist of three major components, i.e. strong γ-fiber, medium α-fiber and weak η-fiber, and they show an asymmetrical distribution throughout the thickness. The effect of reduction on the texture gradient is found to be more significant at and near the center layer; however, the effect of mismatch speed ratio is less important. In most cases, a strong {111}<112> texture component appears in the subsurface layers, that may favour the formation of a sharp Goss texture during the subsequent annealing.
基金Project(51405520)supported by the National Natural Science Foundation of ChinaProject(2012CB619505)supported by National Basic Research Program of China
文摘In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The "positive" and "negative" cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.
文摘A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whether the cross shear is introduced in theinitial time or in early stage. If cross shear is introduced in the stage that the roll-up ofmixing layer occurs, the turbulent intensities of now will increase and mixture of now willbe enhanced.
文摘70-30 brass is rolled with 90% reduction by cross shear rolling in single direction with speed ra- tio 1.39.The sheet is divided into five layers along rolling plane normal to measure macroscopic statis- tical unsymmetric textures in every layer are des- cribed and analysed by means of three dimensional orientation distribution function.The results indi- cate that the main textures in every layer of brass rolled by cross shear rolling in single direction are the same as the main textures of brass rolled by conventional rolling.But the intensities,peak posi- tions and scatters of every texture component in {110}<112>are different,namely,there is a macroscopic statistical unsymmetry.It is found that the textures in every layer of brass rolled by cross shear rolling in single direction can be considered as the textures of brass rolled by common rolling in single direction at identical shear forces,the macroscopic statistical unsymmetry depends on the shear forces which are exerted on the layer.
文摘The texture change along the normal direction to rolling plane of cross shear rolled commer- cial copper has been studied by means of two step method for ODF caleulation and computer simulation.The texture of cross shear rolling of copper is similar in primary components to that of conventional cold rolling,but the scattering degree and direction of the texture are dif- ferent,due to the residual shear strain change in different position along the normal to rolling plane.It seems that no more effect of the shear strain upon the recrystallization texture.
基金Project supported by the National Natural Science Foundation of China
文摘There exists evident macroscopic statistical unsymmetry texture in every layer of 70-30 brass rolled by single directional cross shear rolling. There has been a consistent interest in how to measure and calculate this kind of unsymmetric global texture. Utilizing the previous composite sample methods, people can only describe a
文摘In this paper, a finite element method is developed to numericallyevaluate the shear coefficient of Timoshenko's beam with multiplyconnected cross section. With focus on analyzing shear stressesdistributed at the neutral axis of the beam, an improved definitionof the shear coeffi- cient is presented. Based on this definition, aGalerkin-type finite element formulation is proposed to analyze theshear stresses and shear deflections. Numerical solutions of theexamples for some typical cross-sections are compared with thetheoretical results. The shear coefficient of tower sections of theTsing Ma Bridge is calculated by use of the proposed approach, sothat the finite element modeling of The bridge can be developed withthe accurate values of the sectional properties.
文摘Using the cross correlation function analysis method, this paper discusses shear wave splitting and crack-inducedanisotropy in the crust beneath Tangshan, North China, by the digital data from Tangshan strong ground monon temporary arrays. Sixteen of twenty-one stations in the arrays recorded earthquake events available forstudying from 1982 to 1984. Having calculated 131 available records, we get slower shear wave time delay r andfaster shear wave polarization azimuth Paz in Tangshan region, and the cracks density s is got further fromthem. The analysis shows that the stress field is very complicated in Tangshan region and has strongly regionalfeature. Because of the complicated distribution of faults, different shear wave splitting characteristics are shownin 16 stations, scattered r and different Paz. And they also were observed that the r and PaZ values were diversewithin the time scale of hours in more than one station. In Tangshan region the average results of r, Paz and Bare 0. 0071 s. km-1, northwest-west near to east-west and 0.022 respectively. Meantime, the standard devia.tions were calculated in this paper.
基金National Program on Key Basic Projects (2004CB418406) and Program for the tenth Five-year Plan of China (2004BA601B01-04-03).
文摘After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province in the aftershock region. It provides profuse data to systematically analyze the features of Yao'an earthquake. The crustal anisotropy is realized by shear wave splitting propagating in the upper crust. Based on the accurate aftershock relocations, the shear wave splitting parameters are determined with the cross-correlation method, and the results of different stations and regions are discussed in this paper. These conclusions are obtained as follows: firstly, the average fast directions of aftershock region are controlled by the regional stress field and parallel to the maximum horizontal compressive stress direction; secondly, the average fast directions of disparate stations and regions are different and vary with the structural settings and regional stress fields; finally, delay time value is affected by all sorts of factors, which is affinitive with the shear wave propagating medium, especially.
文摘预制构件连接方法及其界面剪切性能影响整个输电铁塔装配式基础的受力和变形.针对螺栓连接易松动、变形大之类的问题,提出采用高强灌浆料灌注成形的十字形抗剪键作为输电铁塔装配式基础连接方案.采用室内剪切试验和数值模拟,研究该抗剪键连接的剪切性能,并与常用的螺栓连接进行对比分析.结果表明:十字形抗剪键剪切破坏模式为剪断型脆性破坏,破坏形态表现为以抗剪键为中心向外略有扩展成菱形.和螺栓连接相比,抗剪键连接的剪切强度略低,但剪切刚度显著提高.浇筑过程中灌浆料外溢对界面抗剪强度有提高作用.抗剪键的抗剪性能与灌浆料强度正相关,但提高灌浆料强度对抗剪性能提升并不明显.抗剪键深度对抗剪性能有影响,但在抗剪键深度超过20 mm后,抗剪键的抗剪性能不再提高.根据剪切试验和数值模拟结果,建议十字形抗剪键设计为长200 mm、宽20 mm、深20 mm.