The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulati...The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.展开更多
According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformation...The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformations and circumferential stresses of the post-tensioned concrete inner lining with the gradual decrease of the tunnel crown thickness were compared, and the potential bearing risk of insufficient tunnel crown thickness for the Yellow River Crossing Tunnel was revealed. Based on the finite element calculation results of circumferential stresses under different defective cases, the corresponding reinforcement schemes were proposed. The calculation results show that the inner lining can still maintain a satisfactory stress state when the tunnel crown thickness is equal to or greater than 0. 28 m. When the tunnel crown thickness decreases below 0.28 m, the external surface of the crown and internal surface of the crown's adjacent areas may be under tension. The tension stresses will incrementally increase and ultimately exceed the tensile strength of the inner lining concrete as the tunnel crown thickness further decreases gradually. Then, the Yellow River Crossing Tunnel cannot operate normally, and severe cracking, leaking or even failure may occur. When the tunnel crown thickness is equal to or greater than 0.28 m, the reinforcement suggestions are that the void spaces between the inner lining and the outer lining should be back-filled with concrete. When the tunnel crown thickness is less than 0. 28 m, the inner lining should be reinforced by steel plates after concrete back-filling.展开更多
The tunneling between double wells of atom in crossed electromagnetic fields is investigated by a one-dimensional Hamiltonian model. The crossed fields induced outer well is apart from the nuclear origin and it is ver...The tunneling between double wells of atom in crossed electromagnetic fields is investigated by a one-dimensional Hamiltonian model. The crossed fields induced outer well is apart from the nuclear origin and it is very difficult to access by means of spectroscopy but it will be possible if there exists the tunneling of the electron between the outer well and the Coulomb potential predominated well at the nuclear origin. A one-dimensional quantum calculation with B-spline basis has been performed for hydrogen atom in crossed fields accessible in our laboratory, at B = 0.8 T and F = -220 V.cm^-1. The calculation shows that the wavefunctions of some excited states close to the Stark saddle point in the outer well extend over to the Coulomb potential well, making it possible to penetrate the quantum information of the outer well. However, the tunneling rate is very small and the spectral measurement of the transitions from the ground state should be of a high resolution and high sensitivity.展开更多
Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some im...Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some improvements to the use of the Hyperstatic Reaction Method-HRM for analysing tunnels with horseshoe-shaped cross-sections when these tunnels operate under the influence of earthquakes, particularly in cases when the tunnel lining is a continuous lining. The analysis used parameters of a tunnel from the Hanoi metro system, as well as parameters of the strongest earthquake that may occur in the central Hanoi area in the improved HRM and 2 D numerical methods using the ABAQUS software. On the basis of the results obtained, the paper gives conclusions about the HRM methodology when it is used to calculate tunnels that have horseshoe cross-sections operating under the influence of earthquakes.展开更多
To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through fi...To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through finite element analysis and engineering practices, two rows of horizontal perforated freezing pipes were designed and installed on both sides of a passage for tunnel rein- forcement, which produced the thickness and strength of frozen crust that satisfied the design requirements. These information are valuable for guiding the design and construction of river-crossing tunnels in coastal areas.展开更多
Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome r...Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome remains controversial. The cross-sectional areas of the median nerve at the tunnel inlet and outlet can show swelling and compression of the nerve at the carpal. We hypothesized that the ratio of the cross-sectional areas of the median nerve at the carpal tunnel inlet to outlet accurately reflects the severity of carpal tunnel syndrome. To test this, high-resolution ultrasound with a linear array transducer at 5–17 MHz was used to assess 77 patients with carpal tunnel syndrome. The results showed that the cut-off point for the inlet-to-outlet ratio was 1.14. Significant differences in the inlet-to-outlet ratio were found among patients with mild, moderate, and severe carpal tunnel syndrome. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.29 between mild and more severe(moderate and severe) carpal tunnel syndrome patients with 64.7% sensitivity and 72.7% specificity. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.52 between the moderate and severe carpal tunnel syndrome patients with 80.0% sensitivity and 64.7% specificity. These results suggest that the inlet-to-outlet ratio reflected the severity of carpal tunnel syndrome.展开更多
基金Projects(50820125405, 51004020, 51174039, 4112265) supported by the National Natural Science Foundation of ChinaProject(201104563) supported by the China Postdoctoral Science Foundation+3 种基金Project(2011CB013503) supported by the National Basic Research Program of ChinaProject(51274053) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(200960) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NECT-09-0258) supported by the New Century Excellent Talents in University of China
文摘The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金The Natural Science Foundation of Hubei Province(No.2017CFB667)the National Natural Science Foundation of China(No.51079107)
文摘The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformations and circumferential stresses of the post-tensioned concrete inner lining with the gradual decrease of the tunnel crown thickness were compared, and the potential bearing risk of insufficient tunnel crown thickness for the Yellow River Crossing Tunnel was revealed. Based on the finite element calculation results of circumferential stresses under different defective cases, the corresponding reinforcement schemes were proposed. The calculation results show that the inner lining can still maintain a satisfactory stress state when the tunnel crown thickness is equal to or greater than 0. 28 m. When the tunnel crown thickness decreases below 0.28 m, the external surface of the crown and internal surface of the crown's adjacent areas may be under tension. The tension stresses will incrementally increase and ultimately exceed the tensile strength of the inner lining concrete as the tunnel crown thickness further decreases gradually. Then, the Yellow River Crossing Tunnel cannot operate normally, and severe cracking, leaking or even failure may occur. When the tunnel crown thickness is equal to or greater than 0.28 m, the reinforcement suggestions are that the void spaces between the inner lining and the outer lining should be back-filled with concrete. When the tunnel crown thickness is less than 0. 28 m, the inner lining should be reinforced by steel plates after concrete back-filling.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774162)National 973 Project (GrantNo 2005CB724501)
文摘The tunneling between double wells of atom in crossed electromagnetic fields is investigated by a one-dimensional Hamiltonian model. The crossed fields induced outer well is apart from the nuclear origin and it is very difficult to access by means of spectroscopy but it will be possible if there exists the tunneling of the electron between the outer well and the Coulomb potential predominated well at the nuclear origin. A one-dimensional quantum calculation with B-spline basis has been performed for hydrogen atom in crossed fields accessible in our laboratory, at B = 0.8 T and F = -220 V.cm^-1. The calculation shows that the wavefunctions of some excited states close to the Stark saddle point in the outer well extend over to the Coulomb potential well, making it possible to penetrate the quantum information of the outer well. However, the tunneling rate is very small and the spectral measurement of the transitions from the ground state should be of a high resolution and high sensitivity.
基金supported by the Saint Petersburg Mining University
文摘Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some improvements to the use of the Hyperstatic Reaction Method-HRM for analysing tunnels with horseshoe-shaped cross-sections when these tunnels operate under the influence of earthquakes, particularly in cases when the tunnel lining is a continuous lining. The analysis used parameters of a tunnel from the Hanoi metro system, as well as parameters of the strongest earthquake that may occur in the central Hanoi area in the improved HRM and 2 D numerical methods using the ABAQUS software. On the basis of the results obtained, the paper gives conclusions about the HRM methodology when it is used to calculate tunnels that have horseshoe cross-sections operating under the influence of earthquakes.
文摘To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through finite element analysis and engineering practices, two rows of horizontal perforated freezing pipes were designed and installed on both sides of a passage for tunnel rein- forcement, which produced the thickness and strength of frozen crust that satisfied the design requirements. These information are valuable for guiding the design and construction of river-crossing tunnels in coastal areas.
基金supported by a grant from the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery in China,No.14DZ2273300the Natural Science Foundation of Shanghai in China,No.13ZR1404600a grant from the National Key Basic Research Program of China(973 Program),No.2014CB542201
文摘Although ultrasound measurements have been used in previous studies on carpal tunnel syndrome to visualize injury to the median nerve, whether such ultrasound data can indicate the severity of carpal tunnel syndrome remains controversial. The cross-sectional areas of the median nerve at the tunnel inlet and outlet can show swelling and compression of the nerve at the carpal. We hypothesized that the ratio of the cross-sectional areas of the median nerve at the carpal tunnel inlet to outlet accurately reflects the severity of carpal tunnel syndrome. To test this, high-resolution ultrasound with a linear array transducer at 5–17 MHz was used to assess 77 patients with carpal tunnel syndrome. The results showed that the cut-off point for the inlet-to-outlet ratio was 1.14. Significant differences in the inlet-to-outlet ratio were found among patients with mild, moderate, and severe carpal tunnel syndrome. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.29 between mild and more severe(moderate and severe) carpal tunnel syndrome patients with 64.7% sensitivity and 72.7% specificity. The cut-off point in the ratio of cross-sectional areas of the median nerve was 1.52 between the moderate and severe carpal tunnel syndrome patients with 80.0% sensitivity and 64.7% specificity. These results suggest that the inlet-to-outlet ratio reflected the severity of carpal tunnel syndrome.