An improved method that brings enhancement in accuracy for the interrogation of (digital) PIV images is described in this paper. This method is based on cross-correlation with discrete window offset, which makes use o...An improved method that brings enhancement in accuracy for the interrogation of (digital) PIV images is described in this paper. This method is based on cross-correlation with discrete window offset, which makes use of a translation of the second interrogation window and rebuilds it considering rotation and shear. The displacement extracted from PIV images is predicted and corrected by means of an iterative procedure. In addition, the displacement vectors are validated at each intermediate of the iteration process. The present improved cross-correlation method is compared with the conventional one in accuracy by interrogation of synthetic and real (digital) PIV images and the interrogation results are discussed.展开更多
高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问...高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法。在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估。实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R 2这4个评估指标方面均有提升,其中MBE至少提升了43.3%。展开更多
基金The project supported by the National Natural Science Foundation of China (59936140 and 59876038)
文摘An improved method that brings enhancement in accuracy for the interrogation of (digital) PIV images is described in this paper. This method is based on cross-correlation with discrete window offset, which makes use of a translation of the second interrogation window and rebuilds it considering rotation and shear. The displacement extracted from PIV images is predicted and corrected by means of an iterative procedure. In addition, the displacement vectors are validated at each intermediate of the iteration process. The present improved cross-correlation method is compared with the conventional one in accuracy by interrogation of synthetic and real (digital) PIV images and the interrogation results are discussed.
文摘高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法。在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估。实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R 2这4个评估指标方面均有提升,其中MBE至少提升了43.3%。