期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Aspect-Level Sentiment Analysis Based on Deep Learning
1
作者 Mengqi Zhang Jiazhao Chai +2 位作者 Jianxiang Cao Jialing Ji Tong Yi 《Computers, Materials & Continua》 SCIE EI 2024年第3期3743-3762,共20页
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr... In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies. 展开更多
关键词 aspect-level sentiment analysis deep learning graph convolutional neural network user features syntactic dependency tree
下载PDF
Aspect-Level Sentiment Analysis Incorporating Semantic and Syntactic Information
2
作者 Jiachen Yang Yegang Li +2 位作者 Hao Zhang Junpeng Hu Rujiang Bai 《Journal of Computer and Communications》 2024年第1期191-207,共17页
Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-base... Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-based aspect-level sentiment classification model. Self-attention, aspectual word multi-head attention and dependent syntactic relations are fused and the node representations are enhanced with graph convolutional networks to enable the model to fully learn the global semantic and syntactic structural information of sentences. Experimental results show that the model performs well on three public benchmark datasets Rest14, Lap14, and Twitter, improving the accuracy of sentiment classification. 展开更多
关键词 aspect-level sentiment analysis Attentional Mechanisms Dependent Syntactic Trees Graph Convolutional Neural Networks
下载PDF
Multi-Attention Fusion Modeling for Sentiment Analysis of Educational Big Data 被引量:5
3
作者 Guanlin Zhai Yan Yang +1 位作者 Heng Wang Shengdong Du 《Big Data Mining and Analytics》 EI 2020年第4期311-319,共9页
As an important branch of natural language processing,sentiment analysis has received increasing attention.In teaching evaluation,sentiment analysis can help educators discover the true feelings of students about the ... As an important branch of natural language processing,sentiment analysis has received increasing attention.In teaching evaluation,sentiment analysis can help educators discover the true feelings of students about the course in a timely manner and adjust the teaching plan accurately and timely to improve the quality of education and teaching.Aiming at the inefficiency and heavy workload of college curriculum evaluation methods,a Multi-Attention Fusion Modeling(Multi-AFM)is proposed,which integrates global attention and local attention through gating unit control to generate a reasonable contextual representation and achieve improved classification results.Experimental results show that the Multi-AFM model performs better than the existing methods in the application of education and other fields. 展开更多
关键词 educational big data sentiment analysis aspect-level ATTENTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部