This paper tries to characterize volcanic rocks through the development and application of an empirical geomechanical system. Geotechnical information was collected from the samples from several Atlantic Ocean islands...This paper tries to characterize volcanic rocks through the development and application of an empirical geomechanical system. Geotechnical information was collected from the samples from several Atlantic Ocean islands including Madeira, Azores and Canarias archipelagos. An empirical rock classification system termed as the volcanic rock system(VRS) is developed and presented in detail. Results using the VRS are compared with those obtained using the traditional rock mass rating(RMR) system. Data mining(DM) techniques are applied to a database of volcanic rock geomechanical information from the islands.Different algorithms were developed and consequently approaches were followed for predicting rock mass classes using the VRS and RMR classification systems. Finally, some conclusions are drawn with emphasis on the fact that a better performance was achieved using attributes from VRS.展开更多
From the commercial extract of the leaves of Stevia rebaudiana Bertoni, a new minor ent-kaurane diterpene glycoside having five β-D-glucopyranosyl units has been isolated. The chemical structure of the new compound w...From the commercial extract of the leaves of Stevia rebaudiana Bertoni, a new minor ent-kaurane diterpene glycoside having five β-D-glucopyranosyl units has been isolated. The chemical structure of the new compound was characterized as 13-[(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-(2-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-β-D-glucopyranosyl) ester (1) on the basis of extensive 1D (1H & 13C) and 2D NMR (TOCSY, HMQC, and HMBC), and High Resolution (HR) mass spectroscopic data as well as hydrolysis studies.展开更多
Rebaudioside D3, a novel steviol glycoside, is produced by specific UDP-glycosyltransferase of rebaudioside E, a minor steviol glycoside of Stevia rebaudiana Bertoni. The complete proton and carbon NMR spectral assign...Rebaudioside D3, a novel steviol glycoside, is produced by specific UDP-glycosyltransferase of rebaudioside E, a minor steviol glycoside of Stevia rebaudiana Bertoni. The complete proton and carbon NMR spectral assignments of rebaudioside D3, 13-[(2-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-β-D-glucopyranosyl) oxy] ent-kaur-16-en-19-oic acid-(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl) ester, was achieved by the extensive 1D and 2D NMR (1H and 13C, TOCSY, HMQC, HMBC) as well as mass spectral data. Further, hydrolysis studies were performed on rebaudioside D3 using acid and enzymatic studies to identify aglycone and sugar residues in its structure. Rebaudioside D3 is detected in the commercial extract of the leaves of Stevia rebaudiana by LC-MS analysis, suggesting rebaudioside D3 is a natural steviol glycoside.展开更多
The Ordovician fracture-vug carbonate reservoirs of Tarim Basin,are featured by developed vugs,caves and fractures.The strong heterogeneity results in huge uncertainty when these reservoirs are quantitatively characte...The Ordovician fracture-vug carbonate reservoirs of Tarim Basin,are featured by developed vugs,caves and fractures.The strong heterogeneity results in huge uncertainty when these reservoirs are quantitatively characterized using merely static seismic data.The effective quantitative characterization of the reservoirs has been an urgent problem to be solved.This study creatively proposes the"second quantitative characterization"technique with the combination of dynamic and static data based on the primary static quantitative characterization and fully considering lots of key influence factors when conducting characterization.In this technique,dynamic analysis methods such as well testing,production rate transient analysis,dynamic reserve evaluation and dynamic connectivity evaluation are used to get understandings on this kind of reservoir.These understandings are used as statistical parameters to constrain the inversion of seismic wave impedance to improve the relationship between wave impedance and porosity and determine the fracture-vug morphology,calculate dynamic reserves,and then a more accurate fracture-vugmodel can be selected and used to calculate the oil-water contact inversely based on the results of"second quantitative characterization".This method can lower the uncertainties in the primary quantitative characterization of fracture-vug reservoirs,enhance the accuracy of characterization results significantly,and has achieved good application results in the fracture-vug carbonate reservoirs of Tarim Basin.展开更多
With high computational capacity, e.g. many-core and wide floating point SIMD units, Intel Xeon Phi shows promising prospect to accelerate high-performance computing(HPC) applications. But the application of Intel Xeo...With high computational capacity, e.g. many-core and wide floating point SIMD units, Intel Xeon Phi shows promising prospect to accelerate high-performance computing(HPC) applications. But the application of Intel Xeon Phi on data analytics workloads in data center is still an open question. Phibench 2.0 is built for the latest generation of Intel Xeon Phi(KNL, Knights Landing), based on the prior work PhiBench(also named BigDataBench-Phi), which is designed for the former generation of Intel Xeon Phi(KNC, Knights Corner). Workloads of PhiBench 2.0 are delicately chosen based on BigdataBench 4.0 and PhiBench 1.0. Other than that, these workloads are well optimized on KNL, and run on real-world datasets to evaluate their performance and scalability. Further, the microarchitecture-level characteristics including CPI, cache behavior, vectorization intensity, and branch prediction efficiency are analyzed and the impact of affinity and scheduling policy on performance are investigated. It is believed that the observations would help other researchers working on Intel Xeon Phi and data analytics workloads.展开更多
Big data analytics is emerging as one kind of the most important workloads in modern data centers. Hence,it is of great interest to identify the method of achieving the best performance for big data analytics workload...Big data analytics is emerging as one kind of the most important workloads in modern data centers. Hence,it is of great interest to identify the method of achieving the best performance for big data analytics workloads running on state-of-the-art SMT( simultaneous multithreading) processors,which needs comprehensive understanding to workload characteristics. This paper chooses the Spark workloads as the representative big data analytics workloads and performs comprehensive measurements on the POWER8 platform,which supports a wide range of multithreading. The research finds that the thread assignment policy and cache contention have significant impacts on application performance. In order to identify the potential optimization method from the experiment results,this study performs micro-architecture level characterizations by means of hardware performance counters and gives implications accordingly.展开更多
The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. De...The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir.展开更多
The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformi...The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformity is an angular unconformity,overlying multiple normal faults,and accompanied with a thrust fault which maximizes the region's structural complexity.Additionally,the Pennsylvanian angular unconformity creates pinch-outs between the beds above and below.We computed the spectral decomposition and reflector convergence attributes and analyzed them to characterize the angular unconformity and faults.The spectral decomposition attribute divides the broadband seismic data into different spectral bands to resolve thin beds and show thickness variations.In contrast,the reflector convergence attribute highlights the location and direction of the pinch-outs as they dip south at angles between 2° and 6°.After reviewing findings from RGB blending of the spectrally decomposed frequencies along the Pennsylvanian unconformity,we observed channel-like features and multiple linear bands in addition to the faults and pinch-outs.It can be inferred that the identified linear bands could be the result of different lithologies associated with the tilting of the beds,and the faults may possibly influence hydrocarbon migration or act as a flow barrier to entrap hydrocarbon accumulation.The identification of this angular unconformity and the associated features in the study area are vital for the following reasons:1)the unconformity surface represents a natural stratigraphic boundary;2)the stratigraphic pinch-outs act as fluid flow connectivity boundaries;3)the areal extent of compartmentalized reservoirs'boundaries created by the angular unconformity are better defined;and 4)fault displacements are better understood when planning well locations as faults can be flow barriers,or permeability conduits,depending on facies heterogeneity and/or seal effectiveness of a fault,which can affect hydrocarbon production.The methodology utilized in this study is a further step in the characterization of reservoirs and can be used to expand our knowledge and obtain more information about the Goldsmith Field.展开更多
This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years...This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin characteristics such as shape and slope, is highlighted. The research provides valuable insights essential for successful hydrocarbon exploration, reservoir management, and sustainable resource exploitation in coastal West Africa.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
针对机载预警雷达空时自适应处理(space-time adaptive processing,STAP)所面临的异构杂波环境,基于杂波和噪声的联合稀疏特性提出了一种直接数据域(direct data domain,D3)STAP方法。首先通过子孔径平滑技术扩充训练样本集合;然后基于...针对机载预警雷达空时自适应处理(space-time adaptive processing,STAP)所面临的异构杂波环境,基于杂波和噪声的联合稀疏特性提出了一种直接数据域(direct data domain,D3)STAP方法。首先通过子孔径平滑技术扩充训练样本集合;然后基于杂波谱二阶表征理论构造STAP功率字典矩阵、导出目标函数,并解得待检测单元信号的空时功率谱;最后根据杂波先验信息重构无孔径损失的杂波加噪声协方差矩阵。数值实验验证了所提方法的协方差矩阵估计精度高于传统的稀疏恢复D3-STAP算法,且在理想情况和存在阵列误差的情况下,所提方法皆具备更好的低速目标检测性能。展开更多
文摘This paper tries to characterize volcanic rocks through the development and application of an empirical geomechanical system. Geotechnical information was collected from the samples from several Atlantic Ocean islands including Madeira, Azores and Canarias archipelagos. An empirical rock classification system termed as the volcanic rock system(VRS) is developed and presented in detail. Results using the VRS are compared with those obtained using the traditional rock mass rating(RMR) system. Data mining(DM) techniques are applied to a database of volcanic rock geomechanical information from the islands.Different algorithms were developed and consequently approaches were followed for predicting rock mass classes using the VRS and RMR classification systems. Finally, some conclusions are drawn with emphasis on the fact that a better performance was achieved using attributes from VRS.
文摘From the commercial extract of the leaves of Stevia rebaudiana Bertoni, a new minor ent-kaurane diterpene glycoside having five β-D-glucopyranosyl units has been isolated. The chemical structure of the new compound was characterized as 13-[(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-(2-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-β-D-glucopyranosyl) ester (1) on the basis of extensive 1D (1H & 13C) and 2D NMR (TOCSY, HMQC, and HMBC), and High Resolution (HR) mass spectroscopic data as well as hydrolysis studies.
文摘Rebaudioside D3, a novel steviol glycoside, is produced by specific UDP-glycosyltransferase of rebaudioside E, a minor steviol glycoside of Stevia rebaudiana Bertoni. The complete proton and carbon NMR spectral assignments of rebaudioside D3, 13-[(2-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-β-D-glucopyranosyl) oxy] ent-kaur-16-en-19-oic acid-(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl) ester, was achieved by the extensive 1D and 2D NMR (1H and 13C, TOCSY, HMQC, HMBC) as well as mass spectral data. Further, hydrolysis studies were performed on rebaudioside D3 using acid and enzymatic studies to identify aglycone and sugar residues in its structure. Rebaudioside D3 is detected in the commercial extract of the leaves of Stevia rebaudiana by LC-MS analysis, suggesting rebaudioside D3 is a natural steviol glycoside.
基金Supported by the General Program of Natural Science Foundation of China(51874346).
文摘The Ordovician fracture-vug carbonate reservoirs of Tarim Basin,are featured by developed vugs,caves and fractures.The strong heterogeneity results in huge uncertainty when these reservoirs are quantitatively characterized using merely static seismic data.The effective quantitative characterization of the reservoirs has been an urgent problem to be solved.This study creatively proposes the"second quantitative characterization"technique with the combination of dynamic and static data based on the primary static quantitative characterization and fully considering lots of key influence factors when conducting characterization.In this technique,dynamic analysis methods such as well testing,production rate transient analysis,dynamic reserve evaluation and dynamic connectivity evaluation are used to get understandings on this kind of reservoir.These understandings are used as statistical parameters to constrain the inversion of seismic wave impedance to improve the relationship between wave impedance and porosity and determine the fracture-vug morphology,calculate dynamic reserves,and then a more accurate fracture-vugmodel can be selected and used to calculate the oil-water contact inversely based on the results of"second quantitative characterization".This method can lower the uncertainties in the primary quantitative characterization of fracture-vug reservoirs,enhance the accuracy of characterization results significantly,and has achieved good application results in the fracture-vug carbonate reservoirs of Tarim Basin.
基金Supported by the National High Technology Research and Development Program of China(No.2015AA015308)the National Key Research and Development Plan of China(No.2016YFB1000600,2016YFB1000601)the Major Program of National Natural Science Foundation of China(No.61432006)
文摘With high computational capacity, e.g. many-core and wide floating point SIMD units, Intel Xeon Phi shows promising prospect to accelerate high-performance computing(HPC) applications. But the application of Intel Xeon Phi on data analytics workloads in data center is still an open question. Phibench 2.0 is built for the latest generation of Intel Xeon Phi(KNL, Knights Landing), based on the prior work PhiBench(also named BigDataBench-Phi), which is designed for the former generation of Intel Xeon Phi(KNC, Knights Corner). Workloads of PhiBench 2.0 are delicately chosen based on BigdataBench 4.0 and PhiBench 1.0. Other than that, these workloads are well optimized on KNL, and run on real-world datasets to evaluate their performance and scalability. Further, the microarchitecture-level characteristics including CPI, cache behavior, vectorization intensity, and branch prediction efficiency are analyzed and the impact of affinity and scheduling policy on performance are investigated. It is believed that the observations would help other researchers working on Intel Xeon Phi and data analytics workloads.
基金Supported by the National High Technology Research and Development Program of China(No.2015AA015308)the State Key Development Program for Basic Research of China(No.2014CB340402)
文摘Big data analytics is emerging as one kind of the most important workloads in modern data centers. Hence,it is of great interest to identify the method of achieving the best performance for big data analytics workloads running on state-of-the-art SMT( simultaneous multithreading) processors,which needs comprehensive understanding to workload characteristics. This paper chooses the Spark workloads as the representative big data analytics workloads and performs comprehensive measurements on the POWER8 platform,which supports a wide range of multithreading. The research finds that the thread assignment policy and cache contention have significant impacts on application performance. In order to identify the potential optimization method from the experiment results,this study performs micro-architecture level characterizations by means of hardware performance counters and gives implications accordingly.
文摘The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir.
文摘The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformity is an angular unconformity,overlying multiple normal faults,and accompanied with a thrust fault which maximizes the region's structural complexity.Additionally,the Pennsylvanian angular unconformity creates pinch-outs between the beds above and below.We computed the spectral decomposition and reflector convergence attributes and analyzed them to characterize the angular unconformity and faults.The spectral decomposition attribute divides the broadband seismic data into different spectral bands to resolve thin beds and show thickness variations.In contrast,the reflector convergence attribute highlights the location and direction of the pinch-outs as they dip south at angles between 2° and 6°.After reviewing findings from RGB blending of the spectrally decomposed frequencies along the Pennsylvanian unconformity,we observed channel-like features and multiple linear bands in addition to the faults and pinch-outs.It can be inferred that the identified linear bands could be the result of different lithologies associated with the tilting of the beds,and the faults may possibly influence hydrocarbon migration or act as a flow barrier to entrap hydrocarbon accumulation.The identification of this angular unconformity and the associated features in the study area are vital for the following reasons:1)the unconformity surface represents a natural stratigraphic boundary;2)the stratigraphic pinch-outs act as fluid flow connectivity boundaries;3)the areal extent of compartmentalized reservoirs'boundaries created by the angular unconformity are better defined;and 4)fault displacements are better understood when planning well locations as faults can be flow barriers,or permeability conduits,depending on facies heterogeneity and/or seal effectiveness of a fault,which can affect hydrocarbon production.The methodology utilized in this study is a further step in the characterization of reservoirs and can be used to expand our knowledge and obtain more information about the Goldsmith Field.
文摘This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin characteristics such as shape and slope, is highlighted. The research provides valuable insights essential for successful hydrocarbon exploration, reservoir management, and sustainable resource exploitation in coastal West Africa.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘针对机载预警雷达空时自适应处理(space-time adaptive processing,STAP)所面临的异构杂波环境,基于杂波和噪声的联合稀疏特性提出了一种直接数据域(direct data domain,D3)STAP方法。首先通过子孔径平滑技术扩充训练样本集合;然后基于杂波谱二阶表征理论构造STAP功率字典矩阵、导出目标函数,并解得待检测单元信号的空时功率谱;最后根据杂波先验信息重构无孔径损失的杂波加噪声协方差矩阵。数值实验验证了所提方法的协方差矩阵估计精度高于传统的稀疏恢复D3-STAP算法,且在理想情况和存在阵列误差的情况下,所提方法皆具备更好的低速目标检测性能。