期刊文献+
共找到4,620篇文章
< 1 2 231 >
每页显示 20 50 100
Evolving patterns of agricultural production space in China:A network-based approach
1
作者 Shuhui Yang Zhongkai Li +2 位作者 Jianlin Zhou Yancheng Gao Xuefeng Cui 《Geography and Sustainability》 CSCD 2024年第1期121-134,共14页
The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have p... The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have predominantly centered on individual or specific crop types,using methods such as remote sensing or statistical metrological analysis.In this study,we characterize the agricultural production space(APS)by bipartite network connecting agricultural products and provinces,to reveal the relatedness between diverse agricultural products and the spatiotemporal characteristic of provincial production capabilities in China.The results show that core products are cereal,pork,melon,and pome fruit;meanwhile the milk,grape,and fiber crop show an upward trend in centrality,which is in line with diet structure changes in China over the past decades.The little changes in community components and structures of agricultural products and provinces reveal that agricultural production patterns in China are relatively stable.Additionally,identified provincial communities closely resemble China's agricultural natural zones.Furthermore,the observed growth in production capabilities in North and Northeast China implies their potential focus areas for future agricultural production.Despite the superior production capa-bilities of southern provinces,recent years have witnessed a notable decline,warranting special attentions.The findings provide a comprehensive perspective for understanding the complex relationship of agricultural prod-ucts'relatedness,production capabilities and production patterns,which serve as a reference for the agricultural spatial optimization and agricultural sustainable development. 展开更多
关键词 Agricultural system Complex network Agricultural production space Proximity matrix production capability
下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
2
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning Principal component analysis(PCA) Artificial neural network Mining engineering
下载PDF
Coal mine safety production forewarning based on improved BP neural network 被引量:38
3
作者 Wang Ying Lu Cuijie Zuo Cuiping 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期319-324,共6页
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method... Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production. 展开更多
关键词 Improved PSO algorithm BP neural network Coal mine safety production Early warning
下载PDF
Mixed Integer Robust Programming Model for Multimodal Fresh Agricultural Products Terminal Distribution Network Design
4
作者 Feng Yang Zhong Wu Xiaoyan Teng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期719-738,共20页
The low efficiency and high cost of fresh agricultural product terminal distribution directly restrict the operation of the entire supply network.To reduce costs and optimize the distribution network,we construct a mi... The low efficiency and high cost of fresh agricultural product terminal distribution directly restrict the operation of the entire supply network.To reduce costs and optimize the distribution network,we construct a mixed integer programmingmodel that comprehensively considers tominimize fixed,transportation,fresh-keeping,time,carbon emissions,and performance incentive costs.We analyzed the performance of traditional rider distribution and robot distribution modes in detail.In addition,the uncertainty of the actual market demand poses a huge threat to the stability of the terminal distribution network.In order to resist uncertain interference,we further extend the model to a robust counterpart form.The results of the simulation show that the instability of random parameters will lead to an increase in the cost.Compared with the traditional rider distribution mode,the robot distribution mode can save 12.7%on logistics costs,and the distribution efficiency is higher.Our research can provide support for the design of planning schemes for transportation enterprise managers. 展开更多
关键词 Fresh agricultural product terminal distribution network rider delivery robot delivery UNCERTAINTY
下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction
5
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking product yield Data-driven modeling Multiscale prediction Data decomposition Convolution neural network
下载PDF
A Worsted Yarn Virtual Production System Based on BP Neural Network 被引量:2
6
作者 董奎勇 于伟东 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期34-37,共4页
Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results f... Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results from these two series of models have been compared with the measured values respectively, proving that the accuracy in both the prediction model and the deduction model is high. The experimental results and the corresponding analysis show that the BP neural network is an efficient technique for the quality prediction and has wide prospect in the application of worsted yarn production system. 展开更多
关键词 BP neural network yarn properties top qualities virtual production PREDICTION deduction.
下载PDF
Assessment for Production and Operation Ability of Medium and Small-sized Enterprises Based on Neural Network 被引量:3
7
作者 WANG Yu-hong XU Jun +1 位作者 WANG Guan ZENG Qi 《Journal of China University of Mining and Technology》 EI 2006年第3期376-380,共5页
In order to improve production and operation ability of medium and small-sized enterprises, an assessment-index system of production and operation ability was proposed, and a corresponding assessment model was establi... In order to improve production and operation ability of medium and small-sized enterprises, an assessment-index system of production and operation ability was proposed, and a corresponding assessment model was established based on BP neural network. The conjunction weights of the neural network were continuously modified from output layer to input layer in the process of neural network training to reduce the errors between the anticipated and actual outputs. The results from an example show that this method is reliable and feasible. The production and operation abilitv of an enterorise with assessed result of 0.833 is fairly oowerful, and that with assessed result of 0.644 is average. 展开更多
关键词 medium and small-sized enterprises production and operation ability BP neural network ASSESSMENT
下载PDF
A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model 被引量:2
8
作者 ZHANG Lei DOU Hongen +6 位作者 WANG Tianzhi WANG Hongliang PENG Yi ZHANG Jifeng LIU Zongshang MI Lan JIANG Liwei 《Petroleum Exploration and Development》 CSCD 2022年第5期1150-1160,共11页
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an... Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction. 展开更多
关键词 single well production prediction temporal convolutional network time series prediction water flooding reservoir
下载PDF
Predicting Model for Complex Production Process Based on Dynamic Neural Network 被引量:1
9
作者 许世范 王雪松 郝继飞 《Journal of China University of Mining and Technology》 2001年第1期20-23,共4页
Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutua... Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process. 展开更多
关键词 dynamic neural network Elman network complex production process predicting model
下载PDF
Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection 被引量:1
10
作者 NEGASH Berihun Mamo YAW Atta Dennis 《Petroleum Exploration and Development》 2020年第2期383-392,共10页
As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this met... As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a physics-based extraction of features was proposed for fluid production forecasting to improve the prediction effect. The Bayesian regularization algorithm was selected as the training algorithm of the model. This algorithm, although taking longer time, can better generalize oil, gas and water production data sets. The model was evaluated by calculating mean square error and determination coefficient, drawing error distribution histogram and the cross-plot between simulation data and verification data etc. The model structure was trained, validated and tested with 90% of the historical data, and blindly evaluated using the remaining. The predictive model consumes minimal information and computational cost and is capable of predicting fluid production rate with a coefficient of determination of more than 0.9, which has the simulation results consistent with the practical data. 展开更多
关键词 neural networks machine learning attribute extraction Bayesian regularization algorithm production forecasting water flooding
下载PDF
The Budget Constrained Multi-product Newsboy Problem with Reactive Production:A Problem from Entrepreneurial Network Construction
11
作者 LI WEN-JIN PANG YAN-NI 《Communications in Mathematical Research》 CSCD 2012年第2期97-107,共11页
This paper develops an extended newsboy model and presents a formula- tion for this model. This new model has solved the budget contained multi-product newsboy problem with the reactive production. This model can be u... This paper develops an extended newsboy model and presents a formula- tion for this model. This new model has solved the budget contained multi-product newsboy problem with the reactive production. This model can be used to describe the status of entrepreneurial network construction. We use the Lagrange multiplier procedure to deal with our problem, but it is too complicated to get the exact solu-tion. So we introduce the homotopy method to deal with it. We give the flow chart to describe how to get the solution via the homotopy method. We also illustrate our model in both the classical procedure and the homotopy method. Comparing the two methods, we can see that the homotopy method is more exact and efficient. 展开更多
关键词 newsboy problem entrepreneurial network construction multi-product budget constrained reactive production homotopy method
下载PDF
China reshapes the East Asian production network
12
作者 唐海燕 张会清 《China Economist》 2009年第2期90-102,共13页
From the perspective of intra-product specialization and with in-depth analysis of trade statistics,this paper investigates the influence of China's rise on the East Asian production network.Our conclusions sugges... From the perspective of intra-product specialization and with in-depth analysis of trade statistics,this paper investigates the influence of China's rise on the East Asian production network.Our conclusions suggest that in integrating into the East Asian production network,China has gradually emerged as the manufacturing center of East Asia,weakening the regional influence of the Four Asian Tigers.Meanwhile,the competitive effect of China's rise has helped promote the specialization levels of the network's members and even the network as a whole.With cooperation in various processes of intra-product specialization,internal connections of the East Asian production network were further strengthened.In addition,China became an export platform of East Asia,transforming the export pattern of the East Asian production network to world markets from "bilateral trade" into "triangular trade," trade via China. 展开更多
关键词 China’s RISE Intra-product SPECIALIZATION East ASIA production network Reshape
下载PDF
Tree Network Formation in Poisson Equation Models and the Implications for the Maximum Entropy Production Principle
13
作者 Hiroshi Serizawa Takashi Amemiya Kiminori Itoh 《Natural Science》 2014年第7期514-527,共14页
This paper presents not only practical but also instructive mathematical models to simulate tree network formation using the Poisson equation and the Finite Difference Method (FDM). Then, the implications for entropic... This paper presents not only practical but also instructive mathematical models to simulate tree network formation using the Poisson equation and the Finite Difference Method (FDM). Then, the implications for entropic theories are discussed from the viewpoint of Maximum Entropy Production (MEP). According to the MEP principle, open systems existing in the state far from equilibrium are stabilized when entropy production is maximized, creating dissipative structures with low entropy such as the tree-shaped network. We prepare two simulation models: one is the Poisson equation model that simulates the state far from equilibrium, and the other is the Laplace equation model that simulates the isolated state or the state near thermodynamic equilibrium. The output of these equations is considered to be positively correlated to entropy production of the system. Setting the Poisson equation model so that entropy production is maximized, tree network formation is advanced. We suppose that this is due to the invocation of the MEP principle, that is, entropy of the system is lowered by emitting maximal entropy out of the system. On the other hand, tree network formation is not observed in the Laplace equation model. Our simulation results will offer the persuasive evidence that certifies the effect of the MEP principle. 展开更多
关键词 DISSIPATIVE Structure Far from Equilibrium Fractal POISSON Equation Maximum ENTROPY production (MEP) PRINCIPLE Minimum ENTROPY production (MinEP) PRINCIPLE Tree network
下载PDF
Decent Work and Industrial Upgrading in Global Production Network: a Case of China Apparel Industry
14
作者 赵林飞 顾庆良 《Journal of Donghua University(English Edition)》 EI CAS 2011年第3期295-299,共5页
China apparel industry, which is deeply embedded in the global production network (GPN), faces two urgent issues, social upgrading and economic upgrading. The study of GPN places great emphasis on the two issues. Base... China apparel industry, which is deeply embedded in the global production network (GPN), faces two urgent issues, social upgrading and economic upgrading. The study of GPN places great emphasis on the two issues. Based on the survey of Ningbo apparel industry, four key components of decent work in China apparel industry are discussed. The role of buyers in promoting decent work in suppliers can't be neglected. There are significant correlations between business type and some indicators of decent work. Though the majority of the apparel firms are engaging in processing, more and more firms are involved in marketing and branding. The upgrading trajectory of China apparel industry leads to the economic and social performances. 展开更多
关键词 decent work industrial upgrading global production network
下载PDF
Modelling the impact of climate change on rangeland forage production using a generalized regression neural network:a case study in Isfahan Province,Central Iran
15
作者 Zahra JABERALANSAR Mostafa TARKESH +1 位作者 Mehdi BASSIRI Saeid POURMANAFI 《Journal of Arid Land》 SCIE CSCD 2017年第4期489-503,共15页
Monitoring of rangeland forage production at specified spatial and temporal scales is necessary for grazing management and also for implementation of rehabilitation projects in rangelands. This study focused on the ca... Monitoring of rangeland forage production at specified spatial and temporal scales is necessary for grazing management and also for implementation of rehabilitation projects in rangelands. This study focused on the capability of a generalized regression neural network(GRNN) model combined with GIS techniques to explore the impact of climate change on rangeland forage production. Specifically, a dataset of 115 monitored records of forage production were collected from 16 rangeland sites during the period 1998–2007 in Isfahan Province, Central Iran. Neural network models were designed using the monitored forage production values and available environmental data(including climate and topography data), and the performance of each network model was assessed using the mean estimation error(MEE), model efficiency factor(MEF), and correlation coefficient(r). The best neural network model was then selected and further applied to predict the forage production of rangelands in the future(in 2030 and 2080) under A1 B climate change scenario using Hadley Centre coupled model. The present and future forage production maps were also produced. Rangeland forage production exhibited strong correlations with environmental factors, such as slope, elevation, aspect and annual temperature. The present forage production in the study area varied from 25.6 to 574.1 kg/hm^2. Under climate change scenario, the annual temperature was predicted to increase and the annual precipitation was predicted to decrease. The prediction maps of forage production in the future indicated that the area with low level of forage production(0–100 kg/hm^2) will increase while the areas with moderate, moderately high and high levels of forage production(≥100 kg/hm^2) will decrease both in 2030 and in 2080, which may be attributable to the increasing annual temperature and decreasing annual precipitation. It was predicted that forage production of rangelands will decrease in the next couple of decades, especially in the western and southern parts of Isfahan Province. These changes are more pronounced in elevations between 2200 and 2900 m. Therefore, rangeland managers have to cope with these changes by holistic management approaches through mitigation and human adaptations. 展开更多
关键词 rangelands forage production climate change scenario generalized regression neural network Central Iran
下载PDF
Territory-based and Ownershipbased Gains from Trade under the Global Production Network——An Empirical Study Based on China
16
作者 黎峰 《China Economist》 2014年第6期85-100,共16页
Under global production network,export cannot represent a country's gains from trade,and territory-based gains from trade refer to the remainder of export after deducting the input of intermediate goods and re-exp... Under global production network,export cannot represent a country's gains from trade,and territory-based gains from trade refer to the remainder of export after deducting the input of intermediate goods and re-export after value-added return.Ownership-based gains from trade refer to the remainder of territory-based gains from trade after further deducting the trade in value added(TVA) realized through the inflow of foreign factors.By creating a multicountry input and output model,this paper calculates the territory-based gains from trade,ownership-based gains from trade,and territory-based gains from trade for foreign countries realized through China's export,as well as valueadded return and territory-based gains from trade for foreign countries realized through China's import.This paper has arrived at the following conclusions:behind China's status as the largest goods exporting country in the world,most of Chinese exports contribute to the gains of foreign countries;value addition for foreign countries realized through China's export and value-added return realized through China's import mostly come from Taiwan region,Japan and South Korea in East Asia;a considerable part of gains from trade for the United States realized through China-US trade is achieved through indirect trade. 展开更多
关键词 global production network territory-based gains from trade ownership-based gains from trade gains from trade for foreign countries
下载PDF
Applying Network Technology to Improve TV News Production Mode
17
作者 冷劲松 林成栋 《成组技术与生产现代化》 2003年第4期40-43,47,共5页
With the development of database and computer network technology, traditional TV news production mode (TVNPM) faces great challenge. Up to now, evolution of TVNPM has experienced two stages: In the beginning, TV news ... With the development of database and computer network technology, traditional TV news production mode (TVNPM) faces great challenge. Up to now, evolution of TVNPM has experienced two stages: In the beginning, TV news is produced completely by hand, named as pipelining TVNPM in this paper. This production mode is limited to space and time, so its production cycle is very time-consuming, and it requires a lot of harmony in different departments; Subsequently, thanks to applications of database technology, a new TVNPM appears, which is named as pooled information resource TVNPM. Compared with pipelining TVNPM, this mode promotes information sharing. However, with the development of network technology, especially the Intranet and the Internet, the pooled information resource TVNPM receives strong impact, and it is referred to contrive a new TVNPM. This new TVNPM must support information sharing, remote collaboration, and interaction in communications so as to improve group work efficiency. In this paper, we present such a new TVNPM, namely, Network TVNPM, give a suit of system solution to support the new TVNPM, introduce the new workflow, and in the end analyze the advantages of Network TVNPM. 展开更多
关键词 电视新闻 制作模式 网络技术 TVNPM
下载PDF
A Novel Time-series Artificial Neural Network:A Case Study for Forecasting Oil Production
18
作者 Junhua Chang Baorong Deng Guangren Shi 《控制工程期刊(中英文版)》 2016年第1期1-7,共7页
关键词 神经网络 时间 案例 预报 采油 BPNN 人工 精确性
下载PDF
Reliability supply chain network design model for perishable products 被引量:1
19
作者 于海生 赵林度 《Journal of Southeast University(English Edition)》 EI CAS 2007年第S1期94-98,共5页
The classical supply chain network(SCN)design problem is extended,where the candidate facilities are subject to failure and the products are prone to elapsed time deteriorion.First,the reliable SCN design problem is d... The classical supply chain network(SCN)design problem is extended,where the candidate facilities are subject to failure and the products are prone to elapsed time deteriorion.First,the reliable SCN design problem is defined by introducing the probability that a facility may be prone to inactivity based on the analysis of perishable product characteristics.The perishable product SCN design problem is formulated as a 0-1 integer programming model.The objective is to minimize the weighted sum of the operating cost(the fixed plus transportation cost)and the expected failure cost.And then,the perishable product SCN design model is discussed and solved using the genetic algorithm(GA).The results show how to generate the tradeoff curve between the operating costs and the expected failure costs.And these tradeoff curves demonstrate empirically that substantial improvements in reliability are often possible with minimal increase in the operating costs. 展开更多
关键词 supply chain network perishable product network design RELIABILITY
下载PDF
Sum-Product Networks模型的研究及其在文本分类的应用 被引量:1
20
作者 李俊 《电子设计工程》 2016年第24期42-45,共4页
图模型在机器学习有着广泛的应用。相比图模型,Sum-Product Networks模型具有更强表达能力和更快的推理速度,所以其在对文本和图像数据建模有着广泛的应用。本文总结Sum-Product Networks这一新的深度概率模型的研究进展,先介绍了固定... 图模型在机器学习有着广泛的应用。相比图模型,Sum-Product Networks模型具有更强表达能力和更快的推理速度,所以其在对文本和图像数据建模有着广泛的应用。本文总结Sum-Product Networks这一新的深度概率模型的研究进展,先介绍了固定结构的Sum-Product Networks的参数学习方法,再介绍了根据不同的输入数据而进行的结构和参数学习方法。并且介绍了判别式和生成模型的Sum-Product Networks,最后介绍了Sum-Product Networks在文本分类上的应用。 展开更多
关键词 Sum-product networks模型 概率模型 数据挖掘算法 文本分类
下载PDF
上一页 1 2 231 下一页 到第
使用帮助 返回顶部