期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly (ethylene glycol) matrix and its application for solid state lithium battery 被引量:1
1
作者 Bing Yuan Guangmei Luo +3 位作者 Jing Liang Fangyi Cheng Wangqing Zhang Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期55-59,共5页
A facile one-pot synthesis of solid polymer electrolytes(SPEs), composed of carbonate terminated poly(ethylene glycol)(CH3O-PEG-IC), poly(ethylene glycol)-block-polystyrene(PEG-b-PS) block copolymer nanoparticles cont... A facile one-pot synthesis of solid polymer electrolytes(SPEs), composed of carbonate terminated poly(ethylene glycol)(CH3O-PEG-IC), poly(ethylene glycol)-block-polystyrene(PEG-b-PS) block copolymer nanoparticles containing a conductive PEG corona, fumed SiO2 and Li TFSI salt via polymerization-induced self-assembly is proposed. This method to prepare SPEs has the advantages of one-pot convenient synthesis, avoiding use of organic solvent and conveniently adding inorganic additives. CH3O-PEG-IC combines advantages of PEG and polycarbonate, the in situ synthesized PEG-b-PS nanoparticles containing a rigid polystyrene(PS) core and a PEG corona guarantee continuous lithium ion transport in the synthesized SPEs, and the fumed SiO2 optimizes the interfacial properties and improves the electrochemical stability, all of which afford SPEs a well considerable room temperature ionic conductivity of 1.73 × 10^-4S/cm, high lithium transference number of 0.53, and wide electrochemical stability window of 5.5 V(vs. Li^+/Li). By employing these SPEs, the assembled solid state cells of Li FePO4 |SPEs|Li exhibit considerable cell performance. 展开更多
关键词 solid polymer electrolyte Polymerization-induced SELF-ASSEMBLY solid-STATE lithium battery
下载PDF
Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries 被引量:1
2
作者 Manying Cui Hongyang Zhao +9 位作者 Yanyang Qin Shishi Zhang Ruxin Zhao Miao Zhang Wei Yu Guoxin Gao Xiaofei Hu Yaqiong Su Kai Xi Shujiang Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期74-82,共9页
Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic frame... Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic framework(COF-1)with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li^(+)even deposition in asymmetric solid polymer electrolytes.This in situ prepared 3D cross-linked network Poly(ACMO-MBA)hybrid electrolyte simultaneously delivers outstanding ionic conductivity(1.02×10^(-3)S cm^(-1)at 30°C)and excellent mechanical property(3.5 MPa).The defined nanosized channel in COF-1 selectively conducts Li^(+)increasing Li^(+)transference number to 0.67.Besides,The COF-1 layer and Poly(ACMO-MBA)also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability.The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h.The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles.Moreover,the Li‖LiFePO_(4)full cell stably cycles with a capacity retention of 85%after 500 cycles.the Li‖LiFePO_(4)pouch full exhibits excellent safety performance under pierced and cut conditions.This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs. 展开更多
关键词 covalent organic framework ion transport regulation lithium metal battery solid polymer electrolyte
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
3
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
Ultra-homogeneous dense Ag nano layer enables long lifespan solid-state lithium metal batteries
4
作者 Yaning Liu Tianqi Yang +13 位作者 Ruyi Fang Chengwei Lu Ruojian Ma Ke Yue Zhen Xiao Xiaozheng Zhou Wenkui Zhang Xinping He Yongping Gan Jun Zhang Xinhui Xia Hui Huang Xinyong Tao Yang Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期110-119,共10页
The unstable electrolyte/lithium(Li)anode interface has been one of the key challenges in realizing high energy density solid-state lithium metal batteries(LMBs)applications.Herein,a dense and uniform silver(Ag)nano i... The unstable electrolyte/lithium(Li)anode interface has been one of the key challenges in realizing high energy density solid-state lithium metal batteries(LMBs)applications.Herein,a dense and uniform silver(Ag)nano interlayer with a thickness of∼35 nm is designed accurately by magnetron sputtering technology to optimize the electrolyte/Li anode interface.This Ag nano layer reacts with Li metal anode to in-situ form Li-Ag alloy,thus enhancing the physical interfacial contact,and further improving the interfacial wettability and compatibility.In particular,the Li-Ag alloy is inclined to form AgLi phase proved by cryo-TEM and DFT,effectively preventing SN from continuously“attacking”the Li metal anode due to the lower adsorption of succinonitrile(SN)molecules on AgLi than that of pure Li metal,thereby significantly reinforcing the interfacial stability.Hence,the enhanced physical and chemical stability of electrolyte/Li anode interface promotes the homogeneous deposition of Li^(+)and inhibits the dendrite growth.The Li-symmetric cell maintains stable operation for up to 1700 h and the cycling stability of LiFePO_(4)|SPE|Li full cell is remarkably improved at room temperature(capacity retention rate of 91.9%for 200 cycles).This work opens an effective way for accurate and controllable interface design of long lifespan solid-state LMBs. 展开更多
关键词 Silvernano layer Poly(ethylene oxide) solid polymer electrolyte SUCCINONITRILE lithium metal battery
下载PDF
Synergetic Control of Li^(+)Transport Ability and Solid Electrolyte Interphase by Boron-Rich Hexagonal Skeleton Structured All-Solid-State Polymer Electrolyte
5
作者 Yanan Li Shunchao Ma +7 位作者 Yuehua Zhao Silin Chen Tingting Xiao Hongxing Yin Huiyu Song Xiumei Pan Lina Cong Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期154-163,共10页
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom... High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically. 展开更多
关键词 all-solid-state electrolyte boron-rich polymer lithium metal batteries lithium-ion transference number solid electrolyte interphase layer
下载PDF
Solid polymer electrolytes in all-solid-state lithium metal batteries:From microstructures to properties 被引量:2
6
作者 Zongxi Lin Ouwei Sheng +7 位作者 Xiaohan Cai Dan Duan Ke Yue Jianwei Nai Yao Wang Tiefeng Liu Xinyong Tao Yujing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期358-378,I0009,共22页
All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic con... All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic conductivity and poor interfacial stability are two key factors affecting the practical application of ASSLMBs,and our understanding of the mechanisms behind these key problems from microscopic perspective is still limited.In this review,the mechanisms and advanced characterization techniques of ASSLMBs are summarized to correlate the microstructures and properties.Firstly,we summarize the challenges faced by solid polymer electrolytes(SPEs)in ASSLMBs,such as the low roomtemperature ionic conductivity and the poor interfacial stability.Secondly,several typical improvement methods of polymer ASSLMBs are discussed,including composite SPEs,ultra-thin SPEs,SPEs surface modification and Li anode surface modification.Finally,we conclude the characterizations for correlating the microstructures and the properties of SPEs,with emphasis on the use of emerging advanced techniques(e.g.,cryo-transmission electron microscopy)for in-depth analyzing ASSLMBs.The influence of the microstructures on the properties is very important.Until now,it has been difficult for us to understand the microstructures of batteries.However,some recent studies have demonstrated that we have a better understanding of the microstructures of batteries.Then we suggest that in situ characterization,nondestructive characterization and sub-angstrom resolution are the key technologies to help us further understand the batteries'microstructures and promote the development of batteries.And potential investigations to understand the microstructures evolution and the batteries behaviors are also prospected to expect further reasonable theoretical guidance for the design of ASSLMBs with ideal performance. 展开更多
关键词 lithium metal batteries solid polymer electrolytes MICROSTRUCTURES PROPERTIES
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
7
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
Trimethyl phosphate-enhanced polyvinyl carbonate polymer electrolyte with improved interfacial stability for solid-state lithium battery 被引量:2
8
作者 Fei Zheng Hao-Tong Li +4 位作者 Yan-Zhen Zheng Dan Wang Ning-Ning Yang Hai-Yang Ding Xia Tao 《Rare Metals》 SCIE EI CAS CSCD 2022年第6期1889-1898,共10页
The polyvinyl carbonate(PVC)polymer solid electrolyte can be in-situ generated in the assembled lithium-ion battery(LIBs);however,its rigid characteristic leads to uneven interface contact between electrolyte and elec... The polyvinyl carbonate(PVC)polymer solid electrolyte can be in-situ generated in the assembled lithium-ion battery(LIBs);however,its rigid characteristic leads to uneven interface contact between electrolyte and electrodes.In this work,trimethyl phosphate(TMP)is introduced into the precursor solution for in-situ generation of flexible PVC solid electrolyte to improve the interfacial contact of elec-trolyte and electrodes together with ionic conductivity.The PVC-TMP electrolyte exhibits good interface compatibility with the lithium metal anode,and the lithium symmetric battery based on PVC-TMP electrolyte shows no obvious polarization within 1000 h cycle.As a consequence,the initial interfacial resistance of battery greatly decreases from 278Ω(LiFePO_(4)(LFP)/PVC/Li)to 93Ω(LFP/PVC-TMP/Li)at 50℃,leading to an improved cycling stability of the LFP/PVC-TMP/Li battery.Such in-situ preparation of solid electrolyte within the battery is demonstrated to be very significant for commercial application. 展开更多
关键词 Trimethyl phosphate solid polymer electrolyte Interface stability Compatibility lithium ion battery
原文传递
A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery 被引量:2
9
作者 Zhenchuan Tian Dukjoon Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期603-611,共9页
Poly(vinyl alcohol)/poly(ethylene glycol)(PVA/PEG) semi-interpenetrating networks(s-IPN) were synthesized for the application of solid electrolyte membranes of lithium metal batteries. Thermal, mechanical and dimensio... Poly(vinyl alcohol)/poly(ethylene glycol)(PVA/PEG) semi-interpenetrating networks(s-IPN) were synthesized for the application of solid electrolyte membranes of lithium metal batteries. Thermal, mechanical and dimensional stability, lithium-ion conductivity, interfacial compatibility, and cell performance were evaluated to assure their application. As this s-IPN structure suppressed the crystallinity by formation of network structure, both the lithium-ion conductivity and mechanical strength were simultaneously enhanced. The PVA/PEG-3s-IPN showed the highest lithium-ion conductivity of 3.26 × 10^(-4)S cm^(-1)in a wide electrochemical window(5.8 V vs. Li/Li^(+)), maintaining the robust solid-state with the tensile strength beyond 16.2 MPa at room temperature. The synthesized solid electrolyte membranes exhibited quite high specific capacity over 122 m Ah g^(-1)at 0.1 C from Li|PVA/PEG-3s-IPN|LiFePO_(4) cell and the long-term stable lithium stripping/plating performance for 1000 cycles from Li symmetric cell. 展开更多
关键词 solid polymer electrolyte lithium battery SEMI-IPN lithium-ion conductivity
下载PDF
Mechanistically Novel Frontal-Inspired In Situ Photopolymerization:An Efficient Electrode|Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries 被引量:1
10
作者 Ishamol Shaji Diddo Diddens +1 位作者 Martin Winter Jijeesh Ravi Nair 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期273-282,共10页
The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention ha... The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production. 展开更多
关键词 cathodelelectrolyte interface frontal-inspired photopolymerization in situ polymerization lithium metal polymer battery solid polymer electrolyte
下载PDF
Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries 被引量:4
11
作者 Q.Yang A.Wang +1 位作者 J.Luo W.Tang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期202-215,共14页
Because of its superior safety and excellent processability,solid polymer electrolytes(SPEs)have attracted widespread attention.In lithium based batteries,SPEs have great prospects in replacing leaky and flammable liq... Because of its superior safety and excellent processability,solid polymer electrolytes(SPEs)have attracted widespread attention.In lithium based batteries,SPEs have great prospects in replacing leaky and flammable liquid electrolytes.However,the low ionic conductivity of SPEs cannot meet the requirements of high energy density systems,which is also an important obstacle to its practical application.In this respect,escalating charge carriers(i.e.Li^(+))and Li^(+)transport paths are two major aspects of improving the ionic conductivity of SPEs.This article reviews recent advances from the two perspectives,and the underlying mechanism of these proposed strategies is discussed,including increasing the Li^(+)number and optimizing the Li^(+)transport paths through increasing the types and shortening the distance of Li^(+)transport path.It is hoped that this article can enlighten profound thinking and open up new ways to improve the ionic conductivity of SPEs. 展开更多
关键词 solid polymer electrolyte Ion conductivity Charge carriers Transport paths lithium battery
下载PDF
Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework 被引量:5
12
作者 Long Chen Xiaoming Qiu +1 位作者 Zhiming Bai Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期210-217,I0007,共9页
The solid-state lithium battery is considered as an ideal next-generation energy storage device owing to its high safety,high energy density and low cost.However,the poor ionic conductivity of solid electrolyte and lo... The solid-state lithium battery is considered as an ideal next-generation energy storage device owing to its high safety,high energy density and low cost.However,the poor ionic conductivity of solid electrolyte and low interfacial stability has hindered the application of solid-state lithium battery.Here,a flexible polymer/garnet solid electrolyte is prepared with poly(ethylene oxide),poly(vinylidene fluoride),Li6.75La3 Zr1.75Ta0.25O12,lithium bis(trifluoromethanesulfonyl)imide and oxalate,which exhibits an ionic conductivity of 2.0 ×10^(-4) S cm^(-1) at 55℃,improved mechanical property,wide electrochemical window(4.8 V vs.Li/Li+),enhanced thermal stabilities.Tiny acidic OX was introduced to inhibit the alkalinity reactions between Li6.75La3 Zr1.75Ta0.25O12 and poly(vinylidene fluoride).In order to improve the interfacial stability between cathode and electrolyte,an Al2 O3@LiNi0.5Co0.2Mn0.3O2 based composite cathode framework is also fabricated with poly(ethylene oxide) polymer and lithium salt as additives.The solid-state lithium battery assembled with polymer/garnet solid electrolyte and composite cathode framework demonstrates a high initial discharge capacity of 150.6 mAh g^(-1) and good capacity retention of 86.7% after 80 cycles at 0.2 C and 55℃,which provides a promising choice for achieving the stable electrode/electrolyte interfacial contact in solid-state lithium batteries. 展开更多
关键词 Li6.75La3Zr1.75Ta0.25O12 Polymer/garnet solid electrolyte Interfacial stability Composite cathode framework lithium metal batteries
下载PDF
Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes 被引量:3
13
作者 Tao Chen Haiping Wu +7 位作者 Jing Wan Mengxue Li Yucheng Zhanga Lin Sun Yuncong Liu Lili Chen Rui Wen Chao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期172-178,I0004,共8页
Lithium (Li) metal is a promising anode for the next generation high-energy–density batteries. However, the growth of Li dendrites, low coulombic efficiency and dramatic volume change limit its development. Here, we ... Lithium (Li) metal is a promising anode for the next generation high-energy–density batteries. However, the growth of Li dendrites, low coulombic efficiency and dramatic volume change limit its development. Here, we report a new synthetic poly-dioxolane (PDOL) approach to constructing an artificial 'elastic' SEI to stabilize the Li/electrolyte interface and the Li deposition/dissolution behavior in a variety of electrolytes. By coating PDOL with optimized molecular weights and synthetic routes on Li metal anode, the 'elastic' SEI layer could be maintained on top of the Li metal anode to accommodate the Li deposition/dissolution. No dendrite formation was observed during the cycling process, and the interfacial side reactions were reduced significantly. Consequently, we successfully achieved 330 cycles with a CE of 98.4% in ether electrolytes and 90 cycles with a CE of 94.3% in carbonate electrolytes. Simultaneously, the Li-metal batteries with LiFePO_(4) as cathodes also exhibited improved cycling performance. This strategy could promote the development of dendrite-free metal anodes toward high-performance Li-metal batteries. 展开更多
关键词 Polymer lithium metal anodes solid electrolyte interphase lithium-ion batteries
下载PDF
Lithium bis(oxalate)borate crosslinked polymer electrolytes for high-performance lithium batteries 被引量:2
14
作者 Xiao Wang Jujie Sun +8 位作者 Changhao Feng Xiujuan Wang Minghan Xu Jingjiang Sun Ning Zhang Jun Ma Qingfu Wang Chengzhong Zong Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期228-235,共8页
Solid electrolytes play a vital role in solid-state Li secondary batteries,which are promising high-energy storage devices for new-generation electric vehicles.Nevertheless,obtaining a suitable solid electrolyte by a ... Solid electrolytes play a vital role in solid-state Li secondary batteries,which are promising high-energy storage devices for new-generation electric vehicles.Nevertheless,obtaining a suitable solid electrolyte by a simple and residue-free preparation process,resulting in a stable interface between electrolyte and electrode,is still a great challenge for practical applications.Herein,we report a self-crosslinked polymer electrolyte(SCPE)for high-performance lithium batteries,prepared by a one-step method based on 3-methoxysilyl-terminated polypropylene glycol(SPPG,a liquid oligomer).It is worth noting that lithium bis(oxalate)borate(Li BOB)can react with SPPG to form a crosslinked structure via a curing reaction.This self-formed polymer electrolyte exhibits excellent properties,including high roomtemperature ionic conductivity(2.6×10^(-4) S cm^(-1)),wide electrochemical window(4.7 V),and high Li ion transference number(0.65).The excellent cycling stability(500 cycles,83%)further highlights the improved interfacial stability after the in situ formation of SCPE on the electrode surface.Moreover,this self-formation strategy enhances the safety of the battery under mechanical deformation.Therefore,the present self-crosslinked polymer electrolyte shows great potential for applications in high-performance lithium batteries. 展开更多
关键词 Self-formed Crosslinking structure Polymer electrolyte lithium batteries
下载PDF
Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries 被引量:2
15
作者 Jing Wan Wan-Ping Chen +5 位作者 Gui-Xian Liu Yang Shi Sen Xin Yu-Guo Guo Rui Wen Li-Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期780-786,共7页
Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.Th... Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.The comprehension of dynamic evolution and structure-reactivity correlation at the GPE/Li interface becomes significant.Here,in situ electrochemical atomic force microscopy(EC-AFM)provides insights into the LiNO_(3)-regulated micromechanism of the Li plating/stripping processes upon cycles in GPE-based LMBs at nanoscale.The additive LiNO_(3)induces the formation of amorphous nitride SEI film and facilitates Li^(+) ion diffusion.It stabilizes a compatible interface and regulates the Li nucleation/growth at steady kinetics.The deposited Li is in the shape of chunks and tightly compact.The Li dissolution shows favorable reversibility,which guarantees the cycling performance of LMBs.In situ AFM monitoring provides a deep understanding into the dynamic evolution of Li deposition/dissolution and the interphasial properties of tunable SEI film,regulating the rational design of electrolyte and optimizing interfacial establishment for GPE-based QSSLMBs. 展开更多
关键词 In-situ electrochemical atomic force microscopy Gel polymer electrolyte solid electrolyte interphase lithium deposition/dissolution Quasi-solid-state lithium metal batteries
下载PDF
Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries 被引量:1
16
作者 Yang Zhang Lei Zhang +5 位作者 Peng Guo Chaoyan Zhang Xiaochuan Ren Zhen Jiang Jianjun Song Chuan Shi 《Nano Research》 SCIE EI CSCD 2024年第4期2663-2670,共8页
In order to enhance the ionic conductivity of solid polymer electrolytes(SPEs)and their structural rigidity against lithium dendrite during lithium-ion battery(LIB)cycling,we propose porous garnet Li6.4La3Zr2Al0.2O12(... In order to enhance the ionic conductivity of solid polymer electrolytes(SPEs)and their structural rigidity against lithium dendrite during lithium-ion battery(LIB)cycling,we propose porous garnet Li6.4La3Zr2Al0.2O12(LLZO),as the filler to SPEs.The porous LLZO with interlinked grains was synthesized via a resol-assisted cationic coordinative co-assembly approach.The porous structure of LLZO with high specific surface area facilitates the interaction between polymer and filler and provides sufficient entrance for Li^(+)migration into the LLZO phase.Furthermore,the interconnection of LLZO grains forms continuous inorganic pathways for fast Li^(+)migration,which avoid the multiple diffusion for Li^(+)in interface.As a result,the SPEs with porous LLZO(SPE-PL)show a high ionic conductive of 0.73 mS·cm^(-1) at 30℃ and lithium-ion transference number of 0.40.The porous LLZO with uniformly dispersed pores also acts as an ion distributor to regulate ionic flux.The lithium-symmetrical batteries assembled with SPE-PL show a highly stable Li plating/stripping cycling for nearly 3000 h at 0.1 mA·cm^(-2).The corresponding Li/LiFePO_(4) batteries also exhibit excellent cyclic performance with capacity retention of 75%after nearly 500 cycles.This work brings new insights into the design of conductive fillers and the optimization of SPEs. 展开更多
关键词 solid polymer electrolytes lithium metal battery porous conductive filler solid state battery
原文传递
Crosslinked solubilizer enables nitrate-enriched carbonate polymer electrolytes for stable,high-voltage lithium metal batteries
17
作者 Chuyang Jing Kuan Dai +4 位作者 Dong Liu Wenran Wang Libao Chen Chunxiao Zhang Weifeng Wei 《Science Bulletin》 SCIE EI CAS CSCD 2024年第2期209-217,共9页
High-voltage lithium metal batteries(LMBs)have been considered promising next-generation highenergy-density batteries.However,commercial carbonate electrolytes can scarcely be employed in LMBs owing to their poor comp... High-voltage lithium metal batteries(LMBs)have been considered promising next-generation highenergy-density batteries.However,commercial carbonate electrolytes can scarcely be employed in LMBs owing to their poor compatibility with metallic lithium.N,N-dimethylacrylamide(DMAA)-a crosslinkable solubilizer with a high Gutmann donor number-is employed to facilitate the dissolution of insoluble lithium nitrate(LiNO3)in carbonate-based electrolytes and to form gel polymer electrolytes(GPEs)through in situ polymerization.The Lit solvation structure of the GPEs is regulated using LiNO3 and DMAA,which suppresses the decomposition of LiPFe and facilitates the formation of an inorganic-rich solid electrolyte interface.Consequently,the Coulombic efficiency(CE)of the LillCu cell assembled with a GPE increases to 98.5%at room temperature,and the high-voltage LillNCM622 cell achieves a capacity retention of 80.1%with a high CE of 99.5%after 400 cycles.The bifunctional polymer electrolytes are anticipated to pave the way for next-generation high-voltage LMBs. 展开更多
关键词 crosslinked solubilizer lithium nitrate Carbonate electrolytes Gel polymer electrolytes lithium metal batteries
原文传递
Nanophase separated,grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor
18
作者 Qian Wang Ting Gao +5 位作者 Xiwen Lu Hangchao Wang Minggui Xu Longtao Ren Zheng Chang Wen Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期491-496,共6页
All solid-state lithium metal batteries(ASSLMBs)based on polymer solid electrolyte and lithium metal anode have attracted much attention due to their high energy density and intrinsic safety.However,the low ionic cond... All solid-state lithium metal batteries(ASSLMBs)based on polymer solid electrolyte and lithium metal anode have attracted much attention due to their high energy density and intrinsic safety.However,the low ionic conductivity at room temperature and poor mechanical properties of the solid polymer electrolyte result in increased polarization and poor cycling stability of the Li metal batteries.In order to improve the ionic conductivity at room temperature while maintaining mechanical strength,we combine the conductivity of short chain polyethylene oxide(PEO)and strength of styrene-maleic anhydride copolymer(SMA)to obtain a grafted block copolymer with nanophase separation structure,which has room temperature ionic conductivity up to 1.14×10^(-4)S/cm and tensile strength up to 1.4 MPa.Li||Li symmetric cell can work stably for more than 1500 h under the condition of 0.1 mA/cm^(2).Li||LiFePO_(4)full cells can deliver a high capacity of 151.4 mAh/g at 25℃and 0.2 C/0.2 C charge/discharge conditions,showing 85.6%capacity retention after 400 cycles.Importantly,the all solid state Li||LiFePO_(4)pouch cell shows excellent safety performance under different abuse conditions.These results demonstrate that the nanophase separated,grafted alternate copolymer electrolyte has huge potential for application in Li metal batteries. 展开更多
关键词 solid polymer electrolyte All solid-state battery Li metal battery copolymerS Nanophase separation
原文传递
ZIF-8-functionalized polymer electrolyte with enhanced performance for high-temperature solid-state lithium metal batteries
19
作者 Jin-Fang Zhang Yuan-Yuan Wang +7 位作者 Xiao-Feng Li Gen-Yan Zhang Ying Li Rong Liu Sheng-Liang Hu Tuo-Ping Hu Ruth Knibbe Qing-Bing Xia 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期984-994,共11页
Solid polymer electrolytes(SPEs)with high ionic conductivity are desirable for solid-state lithium metal batteries(SSLMBs)to achieve enhanced safety and energy density.Incorporating nanofillers into a polymeric matrix... Solid polymer electrolytes(SPEs)with high ionic conductivity are desirable for solid-state lithium metal batteries(SSLMBs)to achieve enhanced safety and energy density.Incorporating nanofillers into a polymeric matrix to develop nanocomposite solid electrolytes(NCSEs)has become a promising method for improving the ionic conductivity of the SPEs.Here,a novel ZIF-8-functionalized NCSE was prepared for high-temperature S SLMB s using an in situ radical polymerization method.It is found that the ZIF-8 nanoparticles could reduce the crystallinity of polymer segments and offer a Lewis acid surface that promotes the dissociation of lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)and stabilizes the TFSI^(-) anion movement.Thus,the as-prepared NCSE exhibits an outstanding ionic conductivity of 1.63×10^(-3)S·cm^(-1),an electrochem ical stability window of 5.0 V at 80℃,and excellent interface compatibility with lithium metal anode with a stable polarization over 2000 h.Furthermore,the assembled SSLMBs with LiFePO_(4)cathode show dendrite-free Li-metal surface,good rate capability,and stable cycling stability with a capacity retention of 70%over 1000 cycles at a high temperature of 80℃.This work provides valuable insights into promoting the ionic conductivity of SPEs. 展开更多
关键词 lithium metal batteries Metal-organic frameworks solid polymer electrolytes lithium metal anode Interfacial compatibility
原文传递
Ionic solid-like conductor-assisted polymer electrolytes for solid-state lithium metal batteries
20
作者 Shuaishuai Yan Hao Liu +3 位作者 Xiaoxia Chen Yang Lu Qingbin Cao Kai Liu 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第12期4116-4124,共9页
Solid polymer electrolytes(SPEs)have attracted extensive attention by virtue of lightweight and flexible processability for solidstate lithium metal batteries(LMBs)with high energy density and intrinsic safety.However... Solid polymer electrolytes(SPEs)have attracted extensive attention by virtue of lightweight and flexible processability for solidstate lithium metal batteries(LMBs)with high energy density and intrinsic safety.However,the SPEs suffer from the trade-off effect between ionic conductivity and mechanical strength.Herein,we report an ionic solid-like conductor with high Li+conductivity and good thermal stability as the conductive phase of polymer electrolytes for advanced LMBs.Using poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)as the polymer matrix,the ionic solid-like conductor can be regarded as a solid plasticizer due to its advantages of non-fluidity and non-leakage.It increases the amorphous region and the dissociation degree of lithium salts in SPEs,while minimizing the loss of mechanical properties.As a result,the Li+conductivity of SPEs incorporating the ionic solid-like conductor is enhanced by four orders of magnitude compared to the blank PVDF-HFPbased electrolyte.The optimized SPE membranes can be processed as thin as 50μm with a high Young's modulus of 16.8 MPa,therefore ensuring stable long-term cycling of solid-state LMBs.The Li/Li symmetric cells stably cycled for more than 750 h without short circuits,and the LiFePO_(4)/Li solid-state batteries demonstrate excellent electrochemical performance over 350cycles with a capacity retention of 82.5%.This work provides a new strategy for designing ionic solid-like conductors as solid plasticizers for high-performance polymer electrolytes. 展开更多
关键词 ionic solid-like conductors polymer electrolytes solid plasticizers solid-state lithium metal batteries
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部