期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analyzing Motion Patterns in Crowded Scenes via Automatic Tracklets Clustering 被引量:1
1
作者 王冲 赵旭 +1 位作者 邹毅 刘允才 《China Communications》 SCIE CSCD 2013年第4期144-154,共11页
Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose... Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose a novel approach for the analysis of motion patterns by clustering the tracklets using an unsupervised hierarchical clustering algorithm, where the similarity between tracklets is measured by the Longest Common Subsequences. The tracklets are obtained by tracking dense points under three effective rules, therefore enabling it to capture the motion patterns in crowded scenes. The analysis of motion patterns is implemented in a completely unsupervised way, and the tracklets are clustered automatically through hierarchical clustering algorithm based on a graphic model. To validate the performance of our approach, we conducted experimental evaluations on two datasets. The results reveal the precise distributions of motion patterns in current crowded videos and demonstrate the effectiveness of our approach. 展开更多
关键词 crowded scene analysis motionpattern tracklet automatic clustering
下载PDF
Abnormal Crowd Behavior Detection Based on the Entropy of Optical Flow 被引量:1
2
作者 Zheyi Fan Wei Li +1 位作者 Zhonghang He Zhiwen Liu 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期756-763,共8页
To improve the detection accuracy and robustness of crowd anomaly detection,especially crowd emergency evacuation detection,the abnormal crowd behavior detection method is proposed.This method is based on the improved... To improve the detection accuracy and robustness of crowd anomaly detection,especially crowd emergency evacuation detection,the abnormal crowd behavior detection method is proposed.This method is based on the improved statistical global optical flow entropy which can better describe the degree of chaos of crowd.First,the optical flow field is extracted from the video sequences and a 2D optical flow histogram is gained.Then,the improved optical flow entropy,combining information theory with statistical physics is calculated from 2D optical flow histograms.Finally,the anomaly can be detected according to the abnormality judgment formula.The experimental results show that the detection accuracy achieved over 95%in three public video datasets,which indicates that the proposed algorithm outperforms other state-of-the-art algorithms. 展开更多
关键词 abnormal events detection optical flows entropy crowded scenes crowd behavior
下载PDF
Detecting interaction/complexity within crowd movements using braid entropy
3
作者 Murat AKPULAT Murat EKINCI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第6期849-861,共13页
The segmentation of moving and non-moving regions in an image within the field of crowd analysis is a crucial process in terms of understanding crowd behavior. In many studies, similar movements were segmented accordi... The segmentation of moving and non-moving regions in an image within the field of crowd analysis is a crucial process in terms of understanding crowd behavior. In many studies, similar movements were segmented according to the location, adjacency to each other, direction, and average speed. However, these segments may not in turn indicate the same types of behavior in each region. The purpose of this study is to better understand crowd behavior by locally measuring the degree of interaction/complexity within the segment. For this purpose, the flow of motion in the image is primarily represented as a series of trajectories. The image is divided into hexagonal cells and the finite time braid entropy(FTBE) values are calculated according to the different projection angles of each cell. These values depend on the complexity of the spiral structure that the trajectories generated throughout the movement and show the degree of interaction among pedestrians. In this study, behaviors of different complexities determined in segments are pictured as similar movements on the whole. This study has been tested on 49 different video sequences from the UCF and CUHK databases. 展开更多
关键词 Crowd behavior Motion segmentation Motion entropy Crowd scene analysis Complexity detection Braid entropy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部