With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the lit...With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the literature revealed that most studies tend to use several performance criteria to evaluate the performance of competing forecasting models;however, models are compared to each other using a single criterion at a time, which often leads to different rankings for different criteria—A situation where one cannot make an informed decision as to which model performs best when taking all criteria into account. In order to overcome this methodological problem, Xu and Ouenniche [1] proposed a multidimensional framework based on an input-oriented radial super-efficiency Data Envelopment Analysis (DEA) model to rank order competing forecasting models of crude oil prices’ volatility. However, their approach suffers from a number of issues. In this paper, we overcome such issues by proposing an alternative framework.展开更多
An accurate prediction of crude palm oil (CPO) prices is important especially when investors deal with ever-increasing risks and uncertainties in the future. Therefore, the applicability of the forecasting approaches ...An accurate prediction of crude palm oil (CPO) prices is important especially when investors deal with ever-increasing risks and uncertainties in the future. Therefore, the applicability of the forecasting approaches in predicting the CPO prices is becoming the matter into concerns. In this study, two artificial intelligence approaches, has been used namely artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS). We employed in-sample forecasting on daily free-on-board CPO prices in Malaysia and the series data stretching from a period of January first, 2004 to the end of December 2011. The predictability power of the artificial intelligence approaches was also made in regard with the statistical forecasting approach such as the autoregressive fractionally integrated moving average (ARFIMA) model. The general findings demonstrated that the ANN model is superior compared to the ANFIS and ARFIMA models in predicting the CPO prices.展开更多
This paper proposes a new time-varying parameter distributed lag(DL)model.In contrast to the existing methods,which assume parameters to be random walks or regime shifts,our method allows time-varying coefficients of ...This paper proposes a new time-varying parameter distributed lag(DL)model.In contrast to the existing methods,which assume parameters to be random walks or regime shifts,our method allows time-varying coefficients of lagged explanatory variables to be conditional on past information.Furthermore,a test for constant-parameter DL model is introduced.The model is then applied to examine time-varying causal effect of inventory on crude oil price and forecast weekly crude oil price.Time-varying causal effect of US commercial crude oil inventory on crude oil price return is presented.In particular,the causal effect of inventory is occasionally positive,which is contrary to some previous research.It’s also shown that the proposed model yields the best in and out-of-sample performances compared to seven alternative models including RW,ARMA,VAR,DL,autoregressive-distributed lag(ADL),time-varying parameter ADL(TVP-ADL)and DCB(dynamic conditional beta)models.展开更多
文摘With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the literature revealed that most studies tend to use several performance criteria to evaluate the performance of competing forecasting models;however, models are compared to each other using a single criterion at a time, which often leads to different rankings for different criteria—A situation where one cannot make an informed decision as to which model performs best when taking all criteria into account. In order to overcome this methodological problem, Xu and Ouenniche [1] proposed a multidimensional framework based on an input-oriented radial super-efficiency Data Envelopment Analysis (DEA) model to rank order competing forecasting models of crude oil prices’ volatility. However, their approach suffers from a number of issues. In this paper, we overcome such issues by proposing an alternative framework.
文摘An accurate prediction of crude palm oil (CPO) prices is important especially when investors deal with ever-increasing risks and uncertainties in the future. Therefore, the applicability of the forecasting approaches in predicting the CPO prices is becoming the matter into concerns. In this study, two artificial intelligence approaches, has been used namely artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS). We employed in-sample forecasting on daily free-on-board CPO prices in Malaysia and the series data stretching from a period of January first, 2004 to the end of December 2011. The predictability power of the artificial intelligence approaches was also made in regard with the statistical forecasting approach such as the autoregressive fractionally integrated moving average (ARFIMA) model. The general findings demonstrated that the ANN model is superior compared to the ANFIS and ARFIMA models in predicting the CPO prices.
基金National Natural Science Foundation of China(71871213)。
文摘This paper proposes a new time-varying parameter distributed lag(DL)model.In contrast to the existing methods,which assume parameters to be random walks or regime shifts,our method allows time-varying coefficients of lagged explanatory variables to be conditional on past information.Furthermore,a test for constant-parameter DL model is introduced.The model is then applied to examine time-varying causal effect of inventory on crude oil price and forecast weekly crude oil price.Time-varying causal effect of US commercial crude oil inventory on crude oil price return is presented.In particular,the causal effect of inventory is occasionally positive,which is contrary to some previous research.It’s also shown that the proposed model yields the best in and out-of-sample performances compared to seven alternative models including RW,ARMA,VAR,DL,autoregressive-distributed lag(ADL),time-varying parameter ADL(TVP-ADL)and DCB(dynamic conditional beta)models.