The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this...The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently.展开更多
Flow assurance is one of the core issues in safe and economical operation of waxy crude pipelines.Its essence lies in flow and heat transfer of the crude.In the past 10 years,the authors' team has achieved a lot of i...Flow assurance is one of the core issues in safe and economical operation of waxy crude pipelines.Its essence lies in flow and heat transfer of the crude.In the past 10 years,the authors' team has achieved a lot of innovative results in aspects of waxy crude rheology,flow assurance assessment,and pipelining technologies on the basis of decades of studies.The rheological characteristics of waxy crude are much better understood,and a method for quantitatively simulating the effect of flow shear was developed based on some theoretical breakthroughs.Studies of the mechanism of waxy crude rheology have been deepened to the quantitative level.After successful development of efficient numericalalgorithms,accurate simulations have been achieved for various complex flow and heat transfer situations in waxy crude pipelining,and a reliability-based approach to flow assurance assessment has been set up.New pipelining technologies have been developed such as batching pour-point depressant-(PPD-) treated multiple-waxy-crudes,intermittent transport of waxy crudes through long-distance pipelines,and batching hot and cold crudes.By their application,a series of problems hindering safe,efficient and flexible operation of waxy crude pipelines were tackled,demonstrating that transportation technologies for waxy crude have advanced to a new and high level.展开更多
The batch transportation process of several kinds of crude oil is accomplished by an entire coupled pipeline system,which exhibits complex thermo-hydraulic characteristics.Based on the coupled characteristics among so...The batch transportation process of several kinds of crude oil is accomplished by an entire coupled pipeline system,which exhibits complex thermo-hydraulic characteristics.Based on the coupled characteristics among soil,pipelines and devices(including pumps,heating furnaces and valves),a coupled simulation model of batch transportation for the crude oil pipeline system is established,and a novel coupled simulation algorithm is proposed.The simulation results are in good agreement with the field data of an actual crude oil pipeline system.In addition,based on the numerical simulation,thermo-hydraulic characteristics of pipeline system are investigated,and some new thermo-hydraulic characteristics are obtained.In the batch transportation process with constant flowrate,the change trends of temperature at the outlet of each pipeline segment are hysteretic and the change ranges of temperature become small along mileage.And the adjustment of devices influences thermohydraulic characteristics to some extent.In the batch transportation process with variable flowrate,the complex thermo-hydraulic characteristics are exhibited,which are induced by the comprehensive influence of the changes of oil type,flowrate and absorbed/released heat.Compared with the transportation process with constant flowrate,the high-viscosity oil exhibits similar minimum temperature and lower maximum pressure in the transportation process with variable flowrate,which means that the higher transportation safety of pipeline system is obtained.This study can provide a scientific reference for making the safer batch transportation scheme of crude oil pipeline system.展开更多
基金the Indian Institute of Technology (Indian School of Mines), Dhanbad for providing necessary laboratory facilities and financial support
文摘The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently.
基金the strong and long-term support from the National Natural Science Foundation of China (Grant Nos. 51134006, 50944030)the Ministry of Education (Grant No. 104118)+2 种基金Beijing Municipal Education Commission (Grant No. YB20081141401)companies such as China National Petroleum Corporation (CNPC)China Petrochemical Corporation (SINOPEC)
文摘Flow assurance is one of the core issues in safe and economical operation of waxy crude pipelines.Its essence lies in flow and heat transfer of the crude.In the past 10 years,the authors' team has achieved a lot of innovative results in aspects of waxy crude rheology,flow assurance assessment,and pipelining technologies on the basis of decades of studies.The rheological characteristics of waxy crude are much better understood,and a method for quantitatively simulating the effect of flow shear was developed based on some theoretical breakthroughs.Studies of the mechanism of waxy crude rheology have been deepened to the quantitative level.After successful development of efficient numericalalgorithms,accurate simulations have been achieved for various complex flow and heat transfer situations in waxy crude pipelining,and a reliability-based approach to flow assurance assessment has been set up.New pipelining technologies have been developed such as batching pour-point depressant-(PPD-) treated multiple-waxy-crudes,intermittent transport of waxy crudes through long-distance pipelines,and batching hot and cold crudes.By their application,a series of problems hindering safe,efficient and flexible operation of waxy crude pipelines were tackled,demonstrating that transportation technologies for waxy crude have advanced to a new and high level.
基金supported by the fund of the Beijing Municipal Education Commission(No.22019821001)Award Cultivation Foundation from Beijing Institute of Petrochemical Technology(No.BIPTACF-002)。
文摘The batch transportation process of several kinds of crude oil is accomplished by an entire coupled pipeline system,which exhibits complex thermo-hydraulic characteristics.Based on the coupled characteristics among soil,pipelines and devices(including pumps,heating furnaces and valves),a coupled simulation model of batch transportation for the crude oil pipeline system is established,and a novel coupled simulation algorithm is proposed.The simulation results are in good agreement with the field data of an actual crude oil pipeline system.In addition,based on the numerical simulation,thermo-hydraulic characteristics of pipeline system are investigated,and some new thermo-hydraulic characteristics are obtained.In the batch transportation process with constant flowrate,the change trends of temperature at the outlet of each pipeline segment are hysteretic and the change ranges of temperature become small along mileage.And the adjustment of devices influences thermohydraulic characteristics to some extent.In the batch transportation process with variable flowrate,the complex thermo-hydraulic characteristics are exhibited,which are induced by the comprehensive influence of the changes of oil type,flowrate and absorbed/released heat.Compared with the transportation process with constant flowrate,the high-viscosity oil exhibits similar minimum temperature and lower maximum pressure in the transportation process with variable flowrate,which means that the higher transportation safety of pipeline system is obtained.This study can provide a scientific reference for making the safer batch transportation scheme of crude oil pipeline system.