Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
The purpose of this paper is to provide a summary of a quick overview of the latest developments and unprecedented opportunities for scholars who want to set foot in the field of traditional taxi and online car-hailin...The purpose of this paper is to provide a summary of a quick overview of the latest developments and unprecedented opportunities for scholars who want to set foot in the field of traditional taxi and online car-hailing(TTOC).From the perspectives of peoples(e.g.,passenger,driver,and policymaker),vehicle,road,and environment,this paper describes the current research status of TTOC's big data in six hot topics,including the ridership factor,spatio-temporal distribution and travel behavior,cruising strategy and passenger service market partition,route planning,transportation emission and new-energy,and TTOC's data extensional application.These topics were included in five mainstreams as follows:(1)abundant studies often focus only on determinant analysis on given transportation(taxi,transit,online car-hailing);the exploration of ridership patterns for a multimodal transportation mode is rare;furthermore,multiple aspects of factors were not considered synchronously in a wide time span;(2)travel behavior research mainly concentrates on the commuting trips and distribution patterns of various travel indices(e.g.,distance,displacement,time);(3)the taxi driver-searching strategy can be divided into autopsychic cruising and system dispatching;(4)the spatio-temporal distribution character of TTOC's fuel consumption(FC)and greenhouse gas(GHG)emissions has become a hotspot recently,and there has been a recommendation for electric taxi(ET)in urban cities to decrease transportation congestion is proposed;and(5)based on TTOC and point of interest(POI)multi-source data,many machine learning algorithms were used to predict travel condition indices,land use,and travel behavior.Then,the main bottlenecks and research directions that can be explored in the future are discussed.We hope this result can provide an overview of current fundamental aspects of TTOC's utilization in the urban area.展开更多
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
基金supported by the National Natural Science Foundation of China,grant number 51878062the National Key Research and Development Program of China,grant number 2019YFB1600300the National Science Foundation of Shaanxi Province,grant number 2020JQ-387。
文摘The purpose of this paper is to provide a summary of a quick overview of the latest developments and unprecedented opportunities for scholars who want to set foot in the field of traditional taxi and online car-hailing(TTOC).From the perspectives of peoples(e.g.,passenger,driver,and policymaker),vehicle,road,and environment,this paper describes the current research status of TTOC's big data in six hot topics,including the ridership factor,spatio-temporal distribution and travel behavior,cruising strategy and passenger service market partition,route planning,transportation emission and new-energy,and TTOC's data extensional application.These topics were included in five mainstreams as follows:(1)abundant studies often focus only on determinant analysis on given transportation(taxi,transit,online car-hailing);the exploration of ridership patterns for a multimodal transportation mode is rare;furthermore,multiple aspects of factors were not considered synchronously in a wide time span;(2)travel behavior research mainly concentrates on the commuting trips and distribution patterns of various travel indices(e.g.,distance,displacement,time);(3)the taxi driver-searching strategy can be divided into autopsychic cruising and system dispatching;(4)the spatio-temporal distribution character of TTOC's fuel consumption(FC)and greenhouse gas(GHG)emissions has become a hotspot recently,and there has been a recommendation for electric taxi(ET)in urban cities to decrease transportation congestion is proposed;and(5)based on TTOC and point of interest(POI)multi-source data,many machine learning algorithms were used to predict travel condition indices,land use,and travel behavior.Then,the main bottlenecks and research directions that can be explored in the future are discussed.We hope this result can provide an overview of current fundamental aspects of TTOC's utilization in the urban area.