The crushed-rock revetment, considered as a highly porous medium, is often applied to embankment slope to protect the underlying permafrost and ensure the thermal stability of roadway in permafrost regions. In this pa...The crushed-rock revetment, considered as a highly porous medium, is often applied to embankment slope to protect the underlying permafrost and ensure the thermal stability of roadway in permafrost regions. In this paper, in order to increase and optimize the cooling capacity of crushed-rock revetment in cold regions roadway engineering, based on the thermal convection theories, the practical geometry and the temperature characteristics of in-situ crushed-rock revetment, convective pattern and cooling effect of crushed-rock revetment are numerically studied, with a thickness of 1.0 m under different geometrical parameters, e.g. sloped angle and aspect ratio. The results indicate that, with a thickness of 1.0 m and a temperature difference of 10.0 °C between top and bottom boundaries, due to the existence of natural convection, the effective thermal conductivity of crushed-rock revetment can be increased and the thermal “semi-conductor” characteristics are endowed. However, the convective pattern changes with the variation of the sloped angle, namely, with the increase of the sloped angle, the convection cell number decreases; furthermore, when the flow changes from various cells to a single cell at a sloped angle, the Nu number is the smallest and the cooling effect is the worst, therefore, the corresponding sloped angle is considered as the worst cooling sloped angle. Besides, with the increase of the aspect ratio, the worst cooling sloped angle increases and tends to 32°, also approaching to the in-situ crushed-rock revetment angle 33.7°. Therefore, when the crushed-rock revetment embankment is too high, that is to say, the aspect ratio of the sloped crushed-rock revetment is too large, some measures should be taken to enhance its cooling effect, which have been researched and discussed in this paper. It is hoped that some scientific references can be supplied to the design and maintenance of the crushed-rock revetment embankment in cold regions.展开更多
Due to the particularity and complexity of permafrost subgrade,research on its long-term maintenance and reinforcement under climate warming and engineering activities is of great significance.To mitigate subgrade dis...Due to the particularity and complexity of permafrost subgrade,research on its long-term maintenance and reinforcement under climate warming and engineering activities is of great significance.To mitigate subgrade diseases caused by thermal disturbance during the engineering construction and operation in the initial stage,the crushed-rock revetment(CRR)was additionally paved with a thickness of 1.5 m and 1.0 m on some sunny and shady shoulders of the traditional embankments along the Qinghai-Tibet railway,respectively.The improving effects for thermal and deforming stability are evaluated based on observation data of ground temperatures and embankment deformations at two sites from 2002 to 2014.The results show that a larger uplifting magnitude in the artificial permafrost table(APT),greater ground temperature decreasing amplitudes and reduction ranges of settling rate appear under the shady embankment shoulder in warm permafrost region,and both sides in the cold permafrost region when reinforcing with CRR.However,in warm permafrost region,the laying of CRR on the sunny slope of subgrade may cause considerable thermal disturbance to the underlying permafrost foundation,combined with the resulting additional stress,induce the further expansion of differential settlement.Moreover,the thermal stability strengthening effect of the CRR is closely related to the variation of the APT thickness in the earlier stage,convection intensity inside the CRR,‘cold energy reserve’in the deeper permafrost,and amount of solar radiation received by the CRR.More effective reinforcements should be implemented to alleviate the potential threaten beneath sunny embankment slope in warm permafrost regions.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos.40601023 and 40730736)the Special Funding for "Prize for Excellent Student" (to Dr. ZHANG Mingyi),awarded by the President of the Chinese Academy of Sciencesthe Western Program of the Chinese Academy of Sciences (Grant No.KZCX2-XB2-10)
文摘The crushed-rock revetment, considered as a highly porous medium, is often applied to embankment slope to protect the underlying permafrost and ensure the thermal stability of roadway in permafrost regions. In this paper, in order to increase and optimize the cooling capacity of crushed-rock revetment in cold regions roadway engineering, based on the thermal convection theories, the practical geometry and the temperature characteristics of in-situ crushed-rock revetment, convective pattern and cooling effect of crushed-rock revetment are numerically studied, with a thickness of 1.0 m under different geometrical parameters, e.g. sloped angle and aspect ratio. The results indicate that, with a thickness of 1.0 m and a temperature difference of 10.0 °C between top and bottom boundaries, due to the existence of natural convection, the effective thermal conductivity of crushed-rock revetment can be increased and the thermal “semi-conductor” characteristics are endowed. However, the convective pattern changes with the variation of the sloped angle, namely, with the increase of the sloped angle, the convection cell number decreases; furthermore, when the flow changes from various cells to a single cell at a sloped angle, the Nu number is the smallest and the cooling effect is the worst, therefore, the corresponding sloped angle is considered as the worst cooling sloped angle. Besides, with the increase of the aspect ratio, the worst cooling sloped angle increases and tends to 32°, also approaching to the in-situ crushed-rock revetment angle 33.7°. Therefore, when the crushed-rock revetment embankment is too high, that is to say, the aspect ratio of the sloped crushed-rock revetment is too large, some measures should be taken to enhance its cooling effect, which have been researched and discussed in this paper. It is hoped that some scientific references can be supplied to the design and maintenance of the crushed-rock revetment embankment in cold regions.
基金funded by National Natural Science Foundation of China(41861010,41690144,41801033)the CAS Light of West China Training Program(Granted to Dr.Yan-Dong Hou)+3 种基金Open Fund of the State Key Laboratory of Frozen Soil Engineering(SKLFSE201612)Hongliu Outstanding Youth Project(061806)Service Performance Project of Block Stone Subgrade(031101)the Funds for Creative Research Groups of Gansu province,China(20JR5RA478).
文摘Due to the particularity and complexity of permafrost subgrade,research on its long-term maintenance and reinforcement under climate warming and engineering activities is of great significance.To mitigate subgrade diseases caused by thermal disturbance during the engineering construction and operation in the initial stage,the crushed-rock revetment(CRR)was additionally paved with a thickness of 1.5 m and 1.0 m on some sunny and shady shoulders of the traditional embankments along the Qinghai-Tibet railway,respectively.The improving effects for thermal and deforming stability are evaluated based on observation data of ground temperatures and embankment deformations at two sites from 2002 to 2014.The results show that a larger uplifting magnitude in the artificial permafrost table(APT),greater ground temperature decreasing amplitudes and reduction ranges of settling rate appear under the shady embankment shoulder in warm permafrost region,and both sides in the cold permafrost region when reinforcing with CRR.However,in warm permafrost region,the laying of CRR on the sunny slope of subgrade may cause considerable thermal disturbance to the underlying permafrost foundation,combined with the resulting additional stress,induce the further expansion of differential settlement.Moreover,the thermal stability strengthening effect of the CRR is closely related to the variation of the APT thickness in the earlier stage,convection intensity inside the CRR,‘cold energy reserve’in the deeper permafrost,and amount of solar radiation received by the CRR.More effective reinforcements should be implemented to alleviate the potential threaten beneath sunny embankment slope in warm permafrost regions.