Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metaga...Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metagabbros-diorites(MGD)and syn-tectonic intrusions of older granitoids(OG).We report here the updates of these four rock units in terms of classification,distribution,chemical characteristics,geodynamic evolution,metamorphism,and ages.In addition,we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS.The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs.Integrated information of the island arc metavolcanic and plutonic rocks(gabbros,diorites,tonalites,and granodiorites)furnish evidence of the genetic relationships.These include proximity and a coeval nature in the field;all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities;common geochemical signature of the arc rocks and subduction-related magmatism;their similar enrichment in LREEs;and similar major element compositions with mafic melts derived from metasomatized mantle wedge.The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly.Based on the magmatic,sedimentological,and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes,a possible gradual decrease in the subducted slab dip angle is the most infl uential in any geodynamic model for arc assemblage in the ED of Egypt.展开更多
The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place ...The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place for study of Neo-Tethyan ocean geodynamic evolution and plateau uplift. Recent studies on the Gangdese Jurassic felsic magmatism highlight its juvenile source. However, important aspects concerning the genesis of the juvenile magmatism and related deep geodynamic evolution are still unclear. Here, we report detailed petrological, geochronological, geochemical, whole-rock Sr-Nd isotopic, and in situ Sr-Hf isotopic data for a recently identified hornblende gabbro in the Dongga area, southern Lhasa sub-block. This hornblende gabbro is dominated by hornblende and plagioclase, dated at Early Jurassic(ca. 180–190 Ma), and characterized by a narrow compositional range in SiO2(49.38wt%–52.27wt%), MgO(4.08wt%–7.00wt%), FeO(10.43wt%–11.77wt%), Na2O(2.58wt%–3.51wt%), and K2O(0.48wt%–1.53wt%). It has depleted isotopic signatures, with whole-rock(87Sr/86Sr)i ratios of 0.7033–0.7043, εNd(t) values of +4.90 to +6.99, in situ plagioclase(87Sr/86Sr)i ratios of 0.7034–0.7042, and zircon εHf(t) of +12.2 to +16.8. Our results integrated with published data suggest a model of Gangdese juvenile crustal growth by a subduction-related water-enriched mantle wedge. The hydrous partial melting of the lithosphere mantle was triggered by the dehydration of a Neo-Tethyan oceanic slab. This mafic magmatism emplaced in the middle-lower crust of intraoceanic arcs or active continental margins, leading to Jurassic juvenile crustal growth in southern Tibet.展开更多
U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using...U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using a laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS). The Korean Peninsula is located in the East Asian continental margin and mainly comprises three Precambrian massifs and two metamorphic belts in between them. We obtained 515 concordant to slightly discordant zircon ages ranging from ca. 3566 to ca. 48 Ma. Regardless of river-mouth location, predominance of Mesozoic(249e79 Ma) and Paleoproterozoic(2491e1691 Ma) ages with subordinate Archean ages indicates that the zircon ages reflect present exposures of plutonic/metamorphic rocks in the drainage basins of the South Korean rivers and the crustal growth of the southern Korean Peninsula was focused in these two periods. Comparison of detrital zircon-age data between the North and South Korean river sediments reveals that the Paleoproterozoic zircon age distributions of both regions are nearly identical,while the Neoproterozoice Paleozoic ages exist and the Mesozoic ages are dominant in southern Korean Peninsula. This result suggests that Precambrian terrains in Korea record the similar pre-Mesozoic magmatic history and that the influence of Mesozoic magmatism was mainly focused in South Korea.展开更多
The following equation is proposed in this paper to estimate the crustal growth rate of the North China Platform on the basis of mass equilibrium between the crust and the mantle:The results indicate that the mass fra...The following equation is proposed in this paper to estimate the crustal growth rate of the North China Platform on the basis of mass equilibrium between the crust and the mantle:The results indicate that the mass fractions of the crust during different geological periods are close to the real mass fractions of the crust in the upper mantle and the whole mantle (2-2.5% and 0.5 -0.6%, respectively, Hofmann, 1986), and the discrepancy of the results is probably related to that the heterogeneous contribution of the mantle to the crust both in space and in element. The results also show that the mass of the Archaean crust is only half that of the Proterozoic crust, and the crustal mass remained unchanged from Proterozoic to Paleozoic. suggesting that the plate movement at least started from the Late Proterozoic.展开更多
The North China Craton(NCC)is one of the most complex cratons in the world.It underwent a series of tectonothermal events during the Neoarchean-Paleoproterozoic.The petrogenesis of potassic granitoids,the timing,and t...The North China Craton(NCC)is one of the most complex cratons in the world.It underwent a series of tectonothermal events during the Neoarchean-Paleoproterozoic.The petrogenesis of potassic granitoids,the timing,and the style of Archean crustal growth are still debated.Systematic field and petrological stdudies on the potassic meta-granites from the Guyang-Chayouzhongqi region were carried out.New U-Pb ages,zircon Lu-Hf isotopic analyses,and whole-rock geochemical data were obtained.Two groups(~2.7 Ga and~2.5 Ga)of potassic meta-granites were recognized.The~2.7 Ga meta-granites are mainly A2-type,with variableεHf(t)values(-8.4 to+3.3)and Archean one stage model ages(T_(DM)=~3.0 Ga),indicating that their source was derived from ancient anatectic TTG-like granite and depleted mantle,which suggests that thin crust had formed in the Guyang-Chayouzhongqi region by~3.0 Ga.Similar to the K-rich granites in the NCC,most of the~2.5 Ga potassic meta-granites are typical of A1-type granite,and are enriched in Sm and Gd and depleted in Nb,Ta,P,and Ti.The ages and isotopic data indicate that the~2.5 Ga meta-granites were generated from juvenile crustal sources with Neoarchean TTGs.The overall zircon U-Pb and Hf isotopic data furthermore suggested that the~2.7 Ga event is the most important stage of magmatic accretion in the NCC,similar to other cratons.In contrast,reworking or metamorphic alteration was the main crustal process in the NCC at~2.5 Ga.展开更多
The Quanji (全吉) Massif is located in the Northwest China, which is interpreted as a micro-continent that is composed of metamorphic basement and stable cover strata. There are some controversies of genetic relatio...The Quanji (全吉) Massif is located in the Northwest China, which is interpreted as a micro-continent that is composed of metamorphic basement and stable cover strata. There are some controversies of genetic relationship between the Quanji Massif and the major cratons in China. In this study, we obtained in situ zircon U-Pb and Hf isotopic compositions of the Yingfeng (鹰峰) rapakivi granites from the northwest Quanji Massif by application of LA-MC-ICP-MS technique. Twenty U-Pb age measurements points are concordant or near concordant, and their weighted mean 207pb/206pb age is 1 793.9±6.4 Ma (MSWD= 1.09), yields an upper intercept age of 1 800±17 Ma (MSWD=0.41); 19 Hf isotope measurements yield a two-stage Hf model ages (TDM2) of 2.63 to 2.81 Ga, with a weighted average age of about 2.70±0.02 Ga and till(t)values variate between -8.91 to -5.35. This indicates that magma source of the Yingfeng rapakivi granites were produced from partial melting of late stage of Neoarchean juvenile crust, and suggests a significant crustal growth event occurred in the Quanji Massif at that time. The Quanji Massif might be an ancient continental segment detached from the Tarim Craton based on the crustal growth history and other geological records. The Tarim Craton (including the Quanji Massif) and the North China Craton had a similar or homological early crustal evolution around -2.7 Ga, which implies that Tarim Craton might be one of the component parts of North China Craton. of the Yingfeng rapakivi granites were produced from partial melting of late stage of Neoarchean juve- nile crust, and suggests a significant crustal growth event occurred in the Quanji Massif at that time. The Quanji Massif might be an ancient continental segment detached from the Tarim Craton based on the crustal growth history and other geological records. The Tarim Craton (including the Quanji Massif) and the North China Craton had a similar or homological early crustal evolution around -2.7 Ga, which implies that Tarim Craton might be one of the component parts of North China Craton.展开更多
The metamorphosed Early Paleoproterozoic granitoids in the Quanji massif, Northwest- ern China provide constraints for relationship between the Tarim Craton and North China Craton. Among granitoids batholiths, rocks o...The metamorphosed Early Paleoproterozoic granitoids in the Quanji massif, Northwest- ern China provide constraints for relationship between the Tarim Craton and North China Craton. Among granitoids batholiths, rocks of the Mohe quartz-diorite show typically adakitic geochemical characteristics, with medium K2O/Na2O ratios (0.56-1.17) and high Sr (519-619 ppm) low Y (9.37-20.40 ppm) and Yb (0.97-1.77 ppm) concentrations. The rocks have εNd(t) values between +2.4 and +4.4 and depleted mantle Nd model ages of 2.43-2.59 Ga. The magmatic zircons have positive εHf(t) values ranging from +0.40 to +7.60 and depleted mantle Hf model ages of 2.43-2.70 Ga, with major peaks at -2.54 and -2.65 Ga. The geochemical and Nd-Hf isotopic characteristics indicate that the Mohe quartz-dioritic rocks might be formed by partial melting of high-pressure metamorphosed juve- nile crustal rocks in post-orogenic extensional regime in the Early Paleoproterozoic. It suggests that important crustal growth occurred in the Quanji massif and the Tarim Craton at -2.4 and 2.5-2.7 Ga. The Quanji massif and Tarim Craton might share a similar crustal evolution history with the North China Craton in the Neoarchean.展开更多
Zircon U-Pb ages(SHRIMP and LA-ICPMS) and Lu-Hf isotope data(LA-ICPMS) are presented for two granite and two quartzite pebbles from the basal conglomerates of the Sijizhuang Formation in the Hutuo Group from the Wutai...Zircon U-Pb ages(SHRIMP and LA-ICPMS) and Lu-Hf isotope data(LA-ICPMS) are presented for two granite and two quartzite pebbles from the basal conglomerates of the Sijizhuang Formation in the Hutuo Group from the Wutai Mountains area in the North China Craton.These two granite pebbles give zircon 207 Pb/206 Pb ages of 2513±8 Ma and 2527±8 Ma respectively,which are consistent with the emplacement ages of the Wangjiahui grey granite and Guangmingsi or Shifo granite in the Wutai Mountains.Detrital zircons from those two quartzite pebbles are mostly 2550-2490 Ma old with lesser number of 2800-2550 Ma grains,which is similar to the ages of detrital zircons from quartzites in the Gaofan Subgroup of the Neoarchean Wutai Group.Thus,the pebbles in the Hutuo Group basal conglomerates were derived locally from Wutai Mountains Neoarchean sources.Zircons from the Sijizhuang Formation conglomerate granite and quartzite pebbles mostly have positive ε Hf(t) values,a minority with ε Hf(t) values like model depleted mantle(DM) of the same age,but with most showing DM model ages 200-100 Ma.This indicates that most of the source materials were derived from the mantle within the previous 200 million years,whereas some are derived from 2550-2510 Ma juvenile crustal additions.This additional evidence suggests that in the North China Craton there was important initial polycyclic crustal formation and cratonization in the late Neoarchaean,prior to superimposed Palaeoproterozoic orogenic cycles.展开更多
Based on study of Nd isotopic composition for 101 rocks of various types from Tianshan Orogen, the age and character of basement and continental crustal evolution of the Tianshan Orogen were proposed. It is deduced th...Based on study of Nd isotopic composition for 101 rocks of various types from Tianshan Orogen, the age and character of basement and continental crustal evolution of the Tianshan Orogen were proposed. It is deduced that the continental crustal basement of the Tianshan Orogen was formed 1. 8 Ga ago. The protolith of its metamorphic rocks was derived from long-term depleted mantle source in the ancient are tectonic setting probably. The Tianshan Orogen is obviously different from the North Tarim Block in age of basement and post-evolution history. It was also shown that Paleozoic continental crustal growth happened extensively in the Tianshan Orogen, which is distinguished from Yangtse Block and Cathaysia Block in eastern China.展开更多
The orogenic belt of northern China is characterized by widely developed postorogenic Ⅰ fractionated and A-type granites in the Phanerozoic. The isotopic data display relatively high ε Nd(t) and 206Pb/ 204Pb values ...The orogenic belt of northern China is characterized by widely developed postorogenic Ⅰ fractionated and A-type granites in the Phanerozoic. The isotopic data display relatively high ε Nd(t) and 206Pb/ 204Pb values and low I Sr ratio. The low T DM model ages (<100 Ma) suggest that the Neo-Proterozoic-Phanerozoic is one of the main stages in the continental growth.展开更多
Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive pe...Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margin and mineralisation. For the most part these are global signatures, and the peaks of ages tend to b associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios o zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods o crustal thickening associated with compressional tectonics and the development of supercontinents Magma types similar to those from recent within-plate and subduction related settings appear to hav been generated in different areas at broadly similar times before ~3.0 Ga. It can be difficult to put th results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust The development of crustal growth models for the continental crust are discussed, and a number o models based on different data sets indicate that 65%-70% of the present volume of the continental crus was generated by 3 Ga. Such estimates may represent minimum values, but since ~3 Ga there has been reduction in the rates of growth of the continental crust. This reduction is linked to an increase in th rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates a which continental crust was generated. Plate tectonics results in both the generation of new crust and it destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ~3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism b which new continental crust was generated.展开更多
扬子地块黄陵背斜南部出露的花岗闪长质片麻岩是太古宙TTG片麻岩的重要组成单元,具有高Al2O3、Na2O、Sr以及低Rb、Nb等特征,属于高铝TTG系列,且具埃达克质岩石属性。结合片麻岩微量元素蛛网图显示的Nb、Ta和Hf等高场强元素富集以及Th、P...扬子地块黄陵背斜南部出露的花岗闪长质片麻岩是太古宙TTG片麻岩的重要组成单元,具有高Al2O3、Na2O、Sr以及低Rb、Nb等特征,属于高铝TTG系列,且具埃达克质岩石属性。结合片麻岩微量元素蛛网图显示的Nb、Ta和Hf等高场强元素富集以及Th、Pb和U等大离子亲石元素亏损的特征,本文认为该岩石形成于俯冲环境下玄武质洋壳的部分熔融作用。黄陵背斜北部出露的2.9~3.0 Ga TTG片麻岩和弧性质角闪岩,反映该时期是扬子地块陆壳生长的一次重要阶段,且以洋壳俯冲产生岛弧或安第斯型岩浆作用的陆壳水平增生为主,通过微陆块拼贴或规模较小的板块构造模式而形成。展开更多
准噶尔是新疆北部古生代造山带的重要组成部分,以广泛发育晚古生代后碰撞花岗岩为特征,是中亚造山带中显生宙陆壳生长作用非常显著的地区之一。根据新近获得的SHRIMP锆石U-Pb年龄,并参考已经发表的锆石U-Pb年龄,本文重新厘定了准噶尔晚...准噶尔是新疆北部古生代造山带的重要组成部分,以广泛发育晚古生代后碰撞花岗岩为特征,是中亚造山带中显生宙陆壳生长作用非常显著的地区之一。根据新近获得的SHRIMP锆石U-Pb年龄,并参考已经发表的锆石U-Pb年龄,本文重新厘定了准噶尔晚古生代后碰撞深成岩浆活动的时限。按照最新的国际地质年表中石炭纪和二叠纪划分方案(Gradstein et al.,2004),准噶尔后碰撞深成岩浆活动是从早石炭世中-晚维宪期开始、于早二叠世末期结束的。东准噶尔后碰撞深成岩浆活动发生在330~265Ma之间,而西准噶尔后碰撞深成岩浆活动的时限在340~275Ma之间,持续时间分别约65Ma。但是,在东准噶尔,后碰撞深成岩浆活动集中在330~310Ma和305~280Ma两个时段发生,而在西准噶尔,后碰撞深成岩浆活动的高峰发生在310~295Ma之间。准噶尔晚古生代后碰撞深成岩浆活动在空间上没有受到重要地质界线(如蛇绿岩带)的分隔控制,在有的地方花岗岩还可以侵位在蛇绿岩带之中。而晚古生代后碰撞深成岩浆活动不但在准噶尔分布广泛,而且在准噶尔北邻的阿尔泰造山带和南邻的天山造山带中均有出现,具有广泛的区域性。展开更多
文摘Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metagabbros-diorites(MGD)and syn-tectonic intrusions of older granitoids(OG).We report here the updates of these four rock units in terms of classification,distribution,chemical characteristics,geodynamic evolution,metamorphism,and ages.In addition,we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS.The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs.Integrated information of the island arc metavolcanic and plutonic rocks(gabbros,diorites,tonalites,and granodiorites)furnish evidence of the genetic relationships.These include proximity and a coeval nature in the field;all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities;common geochemical signature of the arc rocks and subduction-related magmatism;their similar enrichment in LREEs;and similar major element compositions with mafic melts derived from metasomatized mantle wedge.The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly.Based on the magmatic,sedimentological,and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes,a possible gradual decrease in the subducted slab dip angle is the most infl uential in any geodynamic model for arc assemblage in the ED of Egypt.
基金jointly supported by The National Key Research and Development Project of China(2016YFC0600310)National Science Foundation of China(4132010400441672197 and 41302054)
文摘The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place for study of Neo-Tethyan ocean geodynamic evolution and plateau uplift. Recent studies on the Gangdese Jurassic felsic magmatism highlight its juvenile source. However, important aspects concerning the genesis of the juvenile magmatism and related deep geodynamic evolution are still unclear. Here, we report detailed petrological, geochronological, geochemical, whole-rock Sr-Nd isotopic, and in situ Sr-Hf isotopic data for a recently identified hornblende gabbro in the Dongga area, southern Lhasa sub-block. This hornblende gabbro is dominated by hornblende and plagioclase, dated at Early Jurassic(ca. 180–190 Ma), and characterized by a narrow compositional range in SiO2(49.38wt%–52.27wt%), MgO(4.08wt%–7.00wt%), FeO(10.43wt%–11.77wt%), Na2O(2.58wt%–3.51wt%), and K2O(0.48wt%–1.53wt%). It has depleted isotopic signatures, with whole-rock(87Sr/86Sr)i ratios of 0.7033–0.7043, εNd(t) values of +4.90 to +6.99, in situ plagioclase(87Sr/86Sr)i ratios of 0.7034–0.7042, and zircon εHf(t) of +12.2 to +16.8. Our results integrated with published data suggest a model of Gangdese juvenile crustal growth by a subduction-related water-enriched mantle wedge. The hydrous partial melting of the lithosphere mantle was triggered by the dehydration of a Neo-Tethyan oceanic slab. This mafic magmatism emplaced in the middle-lower crust of intraoceanic arcs or active continental margins, leading to Jurassic juvenile crustal growth in southern Tibet.
基金supported by a grant from the Korea Research Foundation (NRF-2014R1A1A2059895)partly supported by the cooperative research program of the Earthquake Research Institute, The University of Tokyo, Japan
文摘U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using a laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS). The Korean Peninsula is located in the East Asian continental margin and mainly comprises three Precambrian massifs and two metamorphic belts in between them. We obtained 515 concordant to slightly discordant zircon ages ranging from ca. 3566 to ca. 48 Ma. Regardless of river-mouth location, predominance of Mesozoic(249e79 Ma) and Paleoproterozoic(2491e1691 Ma) ages with subordinate Archean ages indicates that the zircon ages reflect present exposures of plutonic/metamorphic rocks in the drainage basins of the South Korean rivers and the crustal growth of the southern Korean Peninsula was focused in these two periods. Comparison of detrital zircon-age data between the North and South Korean river sediments reveals that the Paleoproterozoic zircon age distributions of both regions are nearly identical,while the Neoproterozoice Paleozoic ages exist and the Mesozoic ages are dominant in southern Korean Peninsula. This result suggests that Precambrian terrains in Korea record the similar pre-Mesozoic magmatic history and that the influence of Mesozoic magmatism was mainly focused in South Korea.
文摘The following equation is proposed in this paper to estimate the crustal growth rate of the North China Platform on the basis of mass equilibrium between the crust and the mantle:The results indicate that the mass fractions of the crust during different geological periods are close to the real mass fractions of the crust in the upper mantle and the whole mantle (2-2.5% and 0.5 -0.6%, respectively, Hofmann, 1986), and the discrepancy of the results is probably related to that the heterogeneous contribution of the mantle to the crust both in space and in element. The results also show that the mass of the Archaean crust is only half that of the Proterozoic crust, and the crustal mass remained unchanged from Proterozoic to Paleozoic. suggesting that the plate movement at least started from the Late Proterozoic.
基金financially supported by the National Key Research and Development Program of China(Nos.2018YFC0603702,2017YFC0601301)the Open Fund from Sino Probe Laboratory(No.Sinoprobe Lab 202223)+2 种基金the National Natural Science Foundation of China(Nos.92162322,41372077,and U1403291)China Geological Survey(Nos.DD20190685,DD20160024,DD20160123,and DD20160345)IGCP Project 662。
文摘The North China Craton(NCC)is one of the most complex cratons in the world.It underwent a series of tectonothermal events during the Neoarchean-Paleoproterozoic.The petrogenesis of potassic granitoids,the timing,and the style of Archean crustal growth are still debated.Systematic field and petrological stdudies on the potassic meta-granites from the Guyang-Chayouzhongqi region were carried out.New U-Pb ages,zircon Lu-Hf isotopic analyses,and whole-rock geochemical data were obtained.Two groups(~2.7 Ga and~2.5 Ga)of potassic meta-granites were recognized.The~2.7 Ga meta-granites are mainly A2-type,with variableεHf(t)values(-8.4 to+3.3)and Archean one stage model ages(T_(DM)=~3.0 Ga),indicating that their source was derived from ancient anatectic TTG-like granite and depleted mantle,which suggests that thin crust had formed in the Guyang-Chayouzhongqi region by~3.0 Ga.Similar to the K-rich granites in the NCC,most of the~2.5 Ga potassic meta-granites are typical of A1-type granite,and are enriched in Sm and Gd and depleted in Nb,Ta,P,and Ti.The ages and isotopic data indicate that the~2.5 Ga meta-granites were generated from juvenile crustal sources with Neoarchean TTGs.The overall zircon U-Pb and Hf isotopic data furthermore suggested that the~2.7 Ga event is the most important stage of magmatic accretion in the NCC,similar to other cratons.In contrast,reworking or metamorphic alteration was the main crustal process in the NCC at~2.5 Ga.
基金supported by the National Natural Science Foundation of China(Nos.40972042,40772041,91014002)the Research Grant Council of Hong Kong RGC(No.HKU705311P)
文摘The Quanji (全吉) Massif is located in the Northwest China, which is interpreted as a micro-continent that is composed of metamorphic basement and stable cover strata. There are some controversies of genetic relationship between the Quanji Massif and the major cratons in China. In this study, we obtained in situ zircon U-Pb and Hf isotopic compositions of the Yingfeng (鹰峰) rapakivi granites from the northwest Quanji Massif by application of LA-MC-ICP-MS technique. Twenty U-Pb age measurements points are concordant or near concordant, and their weighted mean 207pb/206pb age is 1 793.9±6.4 Ma (MSWD= 1.09), yields an upper intercept age of 1 800±17 Ma (MSWD=0.41); 19 Hf isotope measurements yield a two-stage Hf model ages (TDM2) of 2.63 to 2.81 Ga, with a weighted average age of about 2.70±0.02 Ga and till(t)values variate between -8.91 to -5.35. This indicates that magma source of the Yingfeng rapakivi granites were produced from partial melting of late stage of Neoarchean juvenile crust, and suggests a significant crustal growth event occurred in the Quanji Massif at that time. The Quanji Massif might be an ancient continental segment detached from the Tarim Craton based on the crustal growth history and other geological records. The Tarim Craton (including the Quanji Massif) and the North China Craton had a similar or homological early crustal evolution around -2.7 Ga, which implies that Tarim Craton might be one of the component parts of North China Craton. of the Yingfeng rapakivi granites were produced from partial melting of late stage of Neoarchean juve- nile crust, and suggests a significant crustal growth event occurred in the Quanji Massif at that time. The Quanji Massif might be an ancient continental segment detached from the Tarim Craton based on the crustal growth history and other geological records. The Tarim Craton (including the Quanji Massif) and the North China Craton had a similar or homological early crustal evolution around -2.7 Ga, which implies that Tarim Craton might be one of the component parts of North China Craton.
基金supported by the National Natural Science Foundation of China(Nos.40972042 and 41172069)Hong Kong RGC(No.HKU704312P)the Fundamental Research Funds for the Central Universities of of Ministry of Education,China
文摘The metamorphosed Early Paleoproterozoic granitoids in the Quanji massif, Northwest- ern China provide constraints for relationship between the Tarim Craton and North China Craton. Among granitoids batholiths, rocks of the Mohe quartz-diorite show typically adakitic geochemical characteristics, with medium K2O/Na2O ratios (0.56-1.17) and high Sr (519-619 ppm) low Y (9.37-20.40 ppm) and Yb (0.97-1.77 ppm) concentrations. The rocks have εNd(t) values between +2.4 and +4.4 and depleted mantle Nd model ages of 2.43-2.59 Ga. The magmatic zircons have positive εHf(t) values ranging from +0.40 to +7.60 and depleted mantle Hf model ages of 2.43-2.70 Ga, with major peaks at -2.54 and -2.65 Ga. The geochemical and Nd-Hf isotopic characteristics indicate that the Mohe quartz-dioritic rocks might be formed by partial melting of high-pressure metamorphosed juve- nile crustal rocks in post-orogenic extensional regime in the Early Paleoproterozoic. It suggests that important crustal growth occurred in the Quanji massif and the Tarim Craton at -2.4 and 2.5-2.7 Ga. The Quanji massif and Tarim Craton might share a similar crustal evolution history with the North China Craton in the Neoarchean.
基金supported by China Geological Survey (Grant Nos. 1212010611802,1212010711815 and 1212011120152)National Natural Science Foundation of China (Grant No. 41172171)+1 种基金Basic Foundation of Scientific Research Work from Ministry of Science and Technology of China (GrantNos. J0721 and J0907)National Commission on Stratigraphy of China(Grant Nos. 1212010511702-01 and 1212011120142)
文摘Zircon U-Pb ages(SHRIMP and LA-ICPMS) and Lu-Hf isotope data(LA-ICPMS) are presented for two granite and two quartzite pebbles from the basal conglomerates of the Sijizhuang Formation in the Hutuo Group from the Wutai Mountains area in the North China Craton.These two granite pebbles give zircon 207 Pb/206 Pb ages of 2513±8 Ma and 2527±8 Ma respectively,which are consistent with the emplacement ages of the Wangjiahui grey granite and Guangmingsi or Shifo granite in the Wutai Mountains.Detrital zircons from those two quartzite pebbles are mostly 2550-2490 Ma old with lesser number of 2800-2550 Ma grains,which is similar to the ages of detrital zircons from quartzites in the Gaofan Subgroup of the Neoarchean Wutai Group.Thus,the pebbles in the Hutuo Group basal conglomerates were derived locally from Wutai Mountains Neoarchean sources.Zircons from the Sijizhuang Formation conglomerate granite and quartzite pebbles mostly have positive ε Hf(t) values,a minority with ε Hf(t) values like model depleted mantle(DM) of the same age,but with most showing DM model ages 200-100 Ma.This indicates that most of the source materials were derived from the mantle within the previous 200 million years,whereas some are derived from 2550-2510 Ma juvenile crustal additions.This additional evidence suggests that in the North China Craton there was important initial polycyclic crustal formation and cratonization in the late Neoarchaean,prior to superimposed Palaeoproterozoic orogenic cycles.
文摘Based on study of Nd isotopic composition for 101 rocks of various types from Tianshan Orogen, the age and character of basement and continental crustal evolution of the Tianshan Orogen were proposed. It is deduced that the continental crustal basement of the Tianshan Orogen was formed 1. 8 Ga ago. The protolith of its metamorphic rocks was derived from long-term depleted mantle source in the ancient are tectonic setting probably. The Tianshan Orogen is obviously different from the North Tarim Block in age of basement and post-evolution history. It was also shown that Paleozoic continental crustal growth happened extensively in the Tianshan Orogen, which is distinguished from Yangtse Block and Cathaysia Block in eastern China.
文摘The orogenic belt of northern China is characterized by widely developed postorogenic Ⅰ fractionated and A-type granites in the Phanerozoic. The isotopic data display relatively high ε Nd(t) and 206Pb/ 204Pb values and low I Sr ratio. The low T DM model ages (<100 Ma) suggest that the Neo-Proterozoic-Phanerozoic is one of the main stages in the continental growth.
基金supported by grants from the LeverhulmeTrust RPG-2015-422 and EM-2017-047\4 to Chris HawkesworthNERC NE/K008862/1 to Bruno Dhuimefrom AustralianResearch Council FL160100168 to Peter A. Cawood
文摘Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margin and mineralisation. For the most part these are global signatures, and the peaks of ages tend to b associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios o zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods o crustal thickening associated with compressional tectonics and the development of supercontinents Magma types similar to those from recent within-plate and subduction related settings appear to hav been generated in different areas at broadly similar times before ~3.0 Ga. It can be difficult to put th results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust The development of crustal growth models for the continental crust are discussed, and a number o models based on different data sets indicate that 65%-70% of the present volume of the continental crus was generated by 3 Ga. Such estimates may represent minimum values, but since ~3 Ga there has been reduction in the rates of growth of the continental crust. This reduction is linked to an increase in th rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates a which continental crust was generated. Plate tectonics results in both the generation of new crust and it destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ~3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism b which new continental crust was generated.
文摘扬子地块黄陵背斜南部出露的花岗闪长质片麻岩是太古宙TTG片麻岩的重要组成单元,具有高Al2O3、Na2O、Sr以及低Rb、Nb等特征,属于高铝TTG系列,且具埃达克质岩石属性。结合片麻岩微量元素蛛网图显示的Nb、Ta和Hf等高场强元素富集以及Th、Pb和U等大离子亲石元素亏损的特征,本文认为该岩石形成于俯冲环境下玄武质洋壳的部分熔融作用。黄陵背斜北部出露的2.9~3.0 Ga TTG片麻岩和弧性质角闪岩,反映该时期是扬子地块陆壳生长的一次重要阶段,且以洋壳俯冲产生岛弧或安第斯型岩浆作用的陆壳水平增生为主,通过微陆块拼贴或规模较小的板块构造模式而形成。
文摘准噶尔是新疆北部古生代造山带的重要组成部分,以广泛发育晚古生代后碰撞花岗岩为特征,是中亚造山带中显生宙陆壳生长作用非常显著的地区之一。根据新近获得的SHRIMP锆石U-Pb年龄,并参考已经发表的锆石U-Pb年龄,本文重新厘定了准噶尔晚古生代后碰撞深成岩浆活动的时限。按照最新的国际地质年表中石炭纪和二叠纪划分方案(Gradstein et al.,2004),准噶尔后碰撞深成岩浆活动是从早石炭世中-晚维宪期开始、于早二叠世末期结束的。东准噶尔后碰撞深成岩浆活动发生在330~265Ma之间,而西准噶尔后碰撞深成岩浆活动的时限在340~275Ma之间,持续时间分别约65Ma。但是,在东准噶尔,后碰撞深成岩浆活动集中在330~310Ma和305~280Ma两个时段发生,而在西准噶尔,后碰撞深成岩浆活动的高峰发生在310~295Ma之间。准噶尔晚古生代后碰撞深成岩浆活动在空间上没有受到重要地质界线(如蛇绿岩带)的分隔控制,在有的地方花岗岩还可以侵位在蛇绿岩带之中。而晚古生代后碰撞深成岩浆活动不但在准噶尔分布广泛,而且在准噶尔北邻的阿尔泰造山带和南邻的天山造山带中均有出现,具有广泛的区域性。